
RDGEN 9.5

February 11, 2009

Contents

1 Introduction 3

2 Startup 3

3 Spectral data 3

3.1 Data reading . 3
3.2 Data writing . 4
3.3 Moving data around . 5

4 Artificial spectra 5

4.1 Putting in absorption lines . 5
4.2 Adding noise . 7

5 Command mode plotting 8

5.1 Setting ranges . 9
5.2 Controlling what is plotted . 10
5.3 Labels and axes . 11
5.4 Velocity scale plots . 11
5.5 Styles and colours . 12
5.6 Plot output . 12

6 Cursor mode plotting 13

6.1 Velocity plots . 14
6.2 Start files for VPFIT . 18

7 Modifying the error arrays 19

8 Column density upper limits 21

9 Other programs 24

9.1 Auto-startup files for VPFIT . 24

A Command list 26

1

B Environment variable associated files 27

B.1 RDSTART . 27
B.2 VPFPLOTS . 28

2

1 Introduction

RDGEN started out as a catch-all program for handling spectroscopic data, containing
miscellaneous routines which shared common input/output/visualization needs. It has
evolved into a front-end/back-end/sidewalls for VPFIT, and a means for looking at
combined VPFIT results. Pretty well everything it does is VPFIT-compatible.

It has several built-in functions, driven by two-letter commands.

2 Startup

Some environment variables should be set before starting RDGEN. These are

• ATOMDIR: The atomic data file, as for VPFIT

• RD PRSETUP: This points to the file containing the list of commands. This
is normally called rd prhelp.dat in the VPFIT/RDGEN source directory, and so
might be

RD PRSETUP=/(wherever)/vpfit9.5/rd prhelp.dat.

If it is absent, then typing ’he’ or ’?’ to get a command list does not give you
anything.

• RDSTART: This file contains a list of startup commands which might be used to
preload various files for the interactive velocity plot package, or just to list the
commands.

• VPFSETUP: Some of the VPFIT setup parameters are used, so it is worth includ-
ing this.

• VPFPLOTS: This just resets plot parameters at each plot, and may be omitted.

It is possibly worth setting these up when you login, and also setting aliases for VPFIT
and RDGEN, so you can forget about them.

3 Spectral data

3.1 Data reading

Just rd filename and FITS, IRAF or ASCII data will be read in. It tries them in
that order, so if you omit file extensions and use rd something, then if both exist
something.fits will be read and something.imh (and something.pix) will not.

The data read expects to find a spectral data file, which may contain wavelength infor-
mation. It will also look for a file containing the error estimates, which is assumed to
be ’filename’.sig.fits (if the data is in ’filename’.fits, where ’filename’ can be anything),
estimates for the RMS data fluctuations (not necessarily the same thing for rebinned
data) in ’filename’.rms.fits, and a continuum estimate in ’filename’.cont.fits. These can
be over-ridden by using FITS header items SIGFILE, RMSFILE and CONTFILE with

3

(string) values giving appropriate file names in ’filename’.fits. If a wavelength table is
used , then it can be a separate file with associated with WAVFILE. Each of these is
held in separate, but associated, arrays. ’CONTFILE unity’ has exactly the effect you
might expect - it gives unit continuum without reading a file. If there is a continuum
file called ’unity.fits’ then it is always ignored.

You may have forgotten which data files are in the current directory. To get a list of
’.fits’ files just type fq (for file query) and you’ll get a list. If there are no FITS files
then it will try the old IRAF ’.imh’ out of sheer desperation.

ASCII files should have 3 or four columns, with each row having

wavelength flux error continuum

If the last column is absent, then unity is assumed. Any format, separated by any (> 0)
number of spaces, is fine.

3.2 Data writing

wr will write the current data to a new file. You will be prompted for a filename if you
do not give it on the command line. You can give the filename as ’file.fits’ or just as
’file’. In the second case the ’.fits’ is added automatically. Note that it writes out ONLY
the data, and not the error estimate or the continuum. If you want to write them as
well you normally have to copy (cy) (see section 3.3) the data from the array in which
it is held to the data array. If the file already exists, then the attempt to write it will
fail and a warning message is given..

The data is written out in double precision. If for some reason you want a single precision
file then

wr file real

will do it for you.

You can write out the error, continuum and fluctuation arrays as one-dimensional
FITS files if you want to. For a file contining the errors use wr file.sig errors or
wr file.sig sigmas, continuum wr file.cont cont, and fluctuations wr file.rms

fluct or wr file.rms rms. In fact only the first two letters of the last parameter are
checked for these, so you can abbreviate ’errors’ to ’er’ etc. Anything which is not a
recognized option results in the writing of the data to a double precision FITS file. Note
the filename extensions - these are the defaults for re-reading if pointers have not been
set in the data header.

If the data is normalized to a unit continuum, then you can write out the data &
errors to a FITS file in a form which is similar to the one used by UVES popler (see
http://www.ast.cam.ac.uk/∼mim/UVES popler.html).

The file does not have all the data fields generated by UVES popler, but has the subset
which VPFIT uses. To write the data in this format use

wr filename UVES_popler

4

(or simply UV will do - only the first two letters are checked).

ASCII data

If you want an ASCII file of the data which may also be read by VPFIT then use

wt filename (all)

and filename then contains one line per pixel with

wavelength data error continuum expected_fluctuations

– where the last column appears only if the optional parameter ’all’ is given.

3.3 Moving data around

cy gives

Copy data array

Enter two letter code in order (from)(to)

continuum=c, scrunched (summed) array=s, workspace=w

e.g. cw for cont. to work (help for more info.)

The internal arrays are workspace (w), error (e), continuum (c), scrunched (linearized
summed) data (s) and its error estimate (t).

ws copies data and error to scrunched data and error

sw copies scrunched data and error to data and error

You can suppress the copying of the error arrays by appending an ”n” to the above two
commands– swn & wsn copy data but not errors.

ew is error to workspace - so only one array is copied

we is workspace to error

cw is continuum to workspace

wc is workspace to continuum

A few specialist options are also available. Type help (after cy) to see what they are.

4 Artificial spectra

4.1 Putting in absorption lines

Generating spectra from a list of ions, redshifts, Doppler parameters and column densi-
ties can be done using the command

gp

and the required information is then prompted for, as

ion,col,bval,zed? .. or ...

<filename> (fmt,clo,chi,zlo,zhi,blo,bhi,binc,type)

[26,everything,everywhere]

5

As this suggests, you can enter values interactively, as

H I 13.5 25 1.77890

HI 13.3 30.0 1.77945

terminating on a blank line (it tells you this). When this is done you still need to convolve
with the instrument profile, which is normally assumed to be a Gaussian, so unless you
have set up a resolution file with a FITS header pointer (see VPFIT documentation, the
section on Spectral resolution) you will get a line like

FWHM (km/s & A) were 0.0 0.000 <CR> to accept, or enter values

Entering

6.6

will result in the whole spectrum being convolved with a Gaussian with FWHM=6.6 km s−1.

If there is a file associated with the key RESFILE in the data header (see VPFIT de-
scription), then this is used to determine the instrument profile and the convolution is
preformed automatically. To turn off the automatic convolution under these circum-
stances, then use gp nosmooth. You will then be asked to enter the FWHM as above
- the answer to which may be zero. Then you can include profile fits from a number of
files, and preform the convolution with the instrument profile only when you reach the
last one in the list.

The resultant spectrum is placed in the continuum array within the program, using the
wavelength scale appropriate for whatever data has been read in. All lines from the
atomic data file (environment variable ATOMDIR) which fall in the spectral range of
the data are included. The spectral data which has been read in is untouched.

If you wish to use a preset list of ions and parameters then respond to

ion,col,bval,zed? .. or ...

<filename> (fmt,clo,chi,zlo,zhi,blo,bhi,binc,type)

[26,everything,everywhere]

with a filename, followed by the parameters indicated. By default the input format is
as for the VPFIT output to fort.26, so an input file can be

%% HE0515rc.fits 1 4174.3265 4176.5921

%% HE0515rc.fits 1 4181.2306 4183.6780

! Stats: 2 1.5273723 194 182 0.090 0 !

C IV 1.696696 0.000009 6.12 3.31 11.946 0.405 0 !

C IV 1.696833 0.000031 15.59 5.20 12.498 0.147 0 !

C IV 1.697105 0.000000 8.29 0.05 13.838 0.002 0 !

where the precise layout does not matter, and lines beginning ’%%’ and ’ !’ are ignored,
as are the error estimates, so a file containing

6

CIV 1.696696 0 6.12 0 11.946

C IV 1.696833 0.0 15.59 0 12.498 0.147 0 !

CIV 1.697105 0.000000 8.29 0.05 13.838 0.002

gives exactly the same results. You need something where the errors appear just to
keep the variable positions corresponding. Gaps between single letter atomic species
and ionization level don’t matter.

You can also use fort.13 format files - just put a ’13’ as the second parameter after the
filename.

The rest of the parameters on that line are for those who want to exclude lines from
the list by the sizes of the parameters. If a value is blank or zero then the limit is not
applied, but otherwise only HI lines with clo< log N <chi, zlo< z <zhi and blo< b <bhi
are included. All metals are included normally, but if the ’type’ parameter (which is a
character string) includes ’z’ the restricted redshift range is applied to these as well.

I can’t remember what ’binc’ does, and invariably leave it as zero.

You can be reminded of the ’type’ codes by typing ’?’ where it asks for the filename, so
the sequence then looks like

....

ion,col,bval,zed? .. or ...

<filename> (fmt,clo,chi,zlo,zhi,blo,bhi,binc,type)

[26,everything,everywhere]

?

Control characters:

c - continuum adjustments only

d - do all but continuum adjustments

e - emission lines

i - ignore special (i.e. <>, __, >>)

l - Ly-a only

m - metals only

n - no metals

s - single ion (prompts)

z - strict z range for everything

ion,col,bval,zed? .. or ...

<filename> (fmt,clo,chi,zlo,zhi,blo,bhi,binc,type)

[26,everything,everywhere]

....

As with the interactive case, the spectral resolution is prompted for, and used in gener-
ating the final result.

4.2 Adding noise

Once you have the model spectrum you want in the continuum array, you may want to
add some noise to it. Gaussian noise my be added to the continuum by using

noise

or just no, since only the first wo letters are checked. You are then prompted for a
random number seed and a (uniform) noise level, with a dialogue which looks like

7

random number seed

632069

s/n relative to peak continuum? <CR> = infinity

(OR c1,c2 gives sigma=sqrt(cont*c1**2 + c2**2))

50.0

You can enter a random number seed if you want, but a carriage return results in one
being generated internally from the computer’s internal clock time. The value it uses is
reflected (632069 here) in case you want to re-run exactly the same noise model again.

The noise generated may be uniform or continuum dependent. If you enter one number
the noise is uniform, and entering two gives something which depends on the continuum
level plus a background. The example above, if applied to unit continuum, gives a
S/N=50.

There is one possible parameter to the noise command - if you enter no data then
noise is added to the data (not the continuum) using the prescription above. This is in
case you want to make the real data even noisier than it really is. The error array is
updated as well by adding the original noise and the artificial noise in quadrature.

However, if you try to add zero noise to the data in this way, by

>> noise data

random number seed

632069

s/n relative to peak continuum? <CR> = infinity

(OR c1,c2 gives sigma=sqrt(cont*c1**2 + c2**2))

0.0

the behaviour is different. The program adds the noise specified by the error array to
the continuum and places the result in the data workspace array. This might be useful
if you want an artificial spectrum with the noise characteristics of the real spectrum.

5 Command mode plotting

Command line mode data plotting offers a few simple options to control what is plotted,
the plot region limits and similar things. For general browsing around a spectrum it is
probably more convenient to use the cursor mode (see Section 6), but once you have
decided what you want then you can set up files to repeat plot operations for printing
etc. using this mode.

The default plot setup is for the data to be plotted in black (or white on a black
background), the continuum in green, and the rms fluctuations in magenta. You can
change this at will.

It is activated by

pl

or alternatively sp. Then you should get a prompt, which answering he or ? to gives a
command list

8

plot parameter? (type he for options list)

> ?

format is cc.. a..a b..b ...

sc - set scale; lo - low chan; hi - high chan

sn - scale range min chan; sx - max; ln; lx

ym - min y; yx - max y; yb - default baseline

qu(it); al(l); co(ntinuum); er(ror); re(sidual p1); rm(s array)

no co (er, rm, re) - do not plot cont (etc)

wl - low wavelength; wh - high wavelength (wn,wx scale ranges also)

nu(ll), nx - nx/page, ny - ny/page

la(bel); ca(ption); te(xt); ch(aracter) size

sp - suppress error, ov # - overplot (bias=#)

at - set attributes (type at for help);

tf - tick marks from file

gk - greek symbols over ticks; ng - numbers

ns - no symbols, tl - tick top, len (fract)

ve - velocity limits; wc - central wavelength

rz - reference redshift for velocity plots

wa - plot on wavelength scale

as - ASCII to fort.17 (toggles back to PGPLOT)

zs - suppress zero lines; zx - x=0 line; zy y=0; zb - draw both

cm (n) - cursor style (when used)

<CR> - plot on last device used

plot parameter? (type he for options list)

>

Responding with a carriage return gives a plot of the data on the current plot device
(it asks which if none has yet been opened, and the usual default is /xwindow), with
wavelength limits the last ones set (all the data if a new data file has been read in),
and showing the data and error values vs wavelength unless something else has been
set. Most limit values are remembered and used for the next plot until over-ridden;
exceptions are y-limits which are reset on re-entry so that the current range covers the
data.

These commands just set flags which are used when the plot is actually performed, so if
there are apparent internal inconsistencies then the last entry affecting that flag is the
one that is used. So e.g. co followed by no co results in the data but not the continuum
being plotted.

Most of these commands are described in the following sections.

5.1 Setting ranges

The range parameters are

• sc p1 multiply the current vertical scale by p1

• lo p1 set the lower end of the range to be plotted to data channel p1

• hi p1 set the upper end of the range to be plotted to data channel p1

• sn p1 set y-scale minimum to p1, leaving the minimum channel to be plotted as
it was

9

• sx p1 set y-scale maximum to p1

• ln p1 set the lower end of the range to be plotted and data scaling range to data
channel p1

• hx p1 set the upper end of the range to be plotted and data scaling range to data
channel p1

• ym p1 set the minimum y-value to be plotted to p1

• yx p1 set the maximum y-value to be plotted to p1

• yb p1 set the default plot baseline to minimum of data & p1

• wl p1 set the lower end of the range to be plotted to wavelength p1

• wh p1 set the upper end of the range to be plotted to wavelength p1

• wn p1 set the lower end of the range to be plotted & and y-scale range to wave-
length p1

• wx p1 set the upper end of the range to be plotted & and y-scale range to wave-
length p1

5.2 Controlling what is plotted

• sp plot the spectrum only

• er plot spectrum & error estimate

• co plot spectrum & continuum

• al plot spectrum, error & continuum

• rm plot rms array along with whatever else has been set up

• qu quit routine without plotting anything

• re p1 p2 overplot residual=(data-continuum)/(rms fluctuation) as well, with hor-
izontal lines indicating 1-σ error ranges. p1, if present, is a rescaling factor and
p2, if present, is a shift for the residual plot.

• ov p1 overplot the new spectrum on the previous one, with the new spectrum
biassed up in the y-direction by p1

• no p1, where p1 = da(ta), er(ror), rm(s), co(ontinuum or re(sidual). Don’t plot
the specified array.

10

5.3 Labels and axes

• la s1 s2 s3 print label s1 under the x-axis, s2 for the y-axis, and s3 as the
caption. If any contain spaces put them in quotes. So, for example, ’wavelength
(A)’ flux ’CIV region’ will give an x-label of ’wavelength (A)’, y-label ’flux’,
and caption ’CIV region’. On the other hand, wavelength (A) flux CIV region

will give x-label ’wavelength’, y-label ’(A)’ and caption ’flux’, which is probably
not what you had in mind.

• ca s1 put a caption s1 on the plot. Again use quotes if there are spaces, or
commas, in the caption.

• te s1 x1 y1 put the string s1 with its lower left corner at position (x1,y1) in the
plot coordinates.

• ch p1 set character size to be p1× the default size

• tf s1 read tick mark positions from a file of wavelengths

• gk put Greek symbols over the ticks where the ticks are labelled

• ng put numbers over the ticks where the ticks are labelled

• ns suppress tick labels

• tl p1 p2 sets the tick top p1 and length p2 as a fraction of the y-size of the plot
window.

• zs suppress zero lines

• zx draw x=0 line but not y=0

• zy draw y=0 line but not x=0

• zb draw both zero lines

5.4 Velocity scale plots

• wa Use a wavelength scale for the x-axis

• rz p1 set p1 to be the reference line redshift for velocity plots, including overlaid
velocity plots

• ve p1 p2 set the velocity range for a velocity plot to be from p1 to p2 relative
to the reference redshift. Note that if you want to include zero velocity then p1

should be negative and p2 positive.

• wc s1 p2 use the line from the atomic data file with ion s1 and wavelength nearest
to p2 as the one for this velocity plot. s1 should contain no spaces, so be something
like e.g. ’HI’, ’NV’, ’SiIII’.

11

5.5 Styles and colours

The plot styles and colours for various curves can be set by setting attributes which are
associated with each of them.These just set PGPLOT variables, and where numbers are
used these are the ones associated with a particular attribute as given in the PGPLOT
documentation. If you don’t have that to hand, just experiment.

If you type at without any prameters, as below, you get a list of options

> at

at

at (curve) (attribute) (value)

curve = data, error, rms, continuum, axes, ticks, residual, (fit region)

attribute = colour, style, width of lines

value = pgplot value

attr = type, value = curve or line for lines

attr = type, value = hist for histograms

plot parameter? (type he for options list)

>

Colours are number coded by PGPLOT, so 1=white on black for screen plotting, black
on white for hardcopy (this is the default). Others depend a bit on the settings for
the medium, but roughly: 2=red, 3=green, 4=dark blue, 5=turquoise, 6=lilac, 7=yel-
low, 8=brown, 9 & 10 are different shades of green; 11 is another blue; 12=purple;
13=magenta; 14 & 15 are shades of grey.

Line styles are again set by PGPLOT number codes, so 1=continuous (default), 2=dashed
line, 3=dot-dash & 4=dots.

Line widths are also as in the PGPLOT manual. A larger number results in a thicker
line.

Line types are ’curve’ for continuous or ’hist’ for histograms. So

at da co 1

at co co 3

at co st 4

at da ty hist

results in the next plot having the data as white histograms (if the background is black,
as on the screen) and the continuum green dots (if it is plotted).

5.6 Plot output

The plotting routine asks where you want the output to go on first entry, and on first
entry only you can specify the number of plots per page in the x- and y- directions
through nx p1 and ny p1.

If you want to change the plot device then in command mode enter

pc n1 n2

which clears the current device and sets things up so next time there will be n1×n2

plots on a page. The plotting routine will again request a plot device when it is used.

If you want an ASCII file of the plotted quantities, then

12

as

will result in the program writing the results to fort.17 instead of the PGPLOT window
or device, without closing the plot device. To restore plotting to that device simply
enter as again when you want that to happen.

6 Cursor mode plotting

Plotting the spectral data in cursor mode allows a bewildering set of options to allow
you to look at the data, plot stacked sections for different ions to see if there is common
velocity structure, make line positions, set up input initial guesses for the file read mode
for VPFIT, modify the continuum, flag bad pixels, visually search for redshift systems,
display fits from VPFIT and see where additional components might be needed,
All of this is via single character input from the plot window, and unfortunately as a
consequence some of the associations are obscure, to say the least. You can type ’?’ at
any stage to get a list, which helps a bit.

To get into this mode you should first read in some data (of course), then type ’dc’ to
normalize to unit continuum (which is assumed), and then

pg - plot the data with cursor control

The cursor mode (pg) operation is fairly flexible, and mimics a few of the IRAF ’splot’
options. What happens is determined by a set of one-letter commands in the graphics
window. The list of these is growing, some of which are:

Left mouse button, or "e", expands plot

(a second position is requested for the other limit)

Center button, or "r" replots

Right button, "q" or "Q" to exit

"?" type the current version of this list

(omitting some of the more obscure ones)

" " print wavelength, flux at cursor position

"." shift range up

"," shift range down

"=" next velocity plot to a postscript file

"-" flag as bad data

"[" table match

"{" Ly-a max redshift

"@" show/hide ref. wavelengths

"a" plot whole array

"b" mark region boundaries (B,o)

"d" demagnify by factor 2

"f" fraction of pixels above cursor

"h" print line parameters for Ly-a (H)

"i" interpolate error

"j" change y of x-point nearest cursor

"k" change error to cursor y-value at that point

"l" print line parameters (L)

"m" wavc, me/rms, mean, rms, mean error

"t" velocity ticks on/off [M overrides "on"]

"u" renormalized velocity scale

13

"v" velocity scale about cursor position

"w" wavelength scale

"x" interpolate data

"y" max y from cursor

"z" change continuum at point

"*" print a *

"<CR>" print a blank line

"C" overplot continuum

"E" replace error

"F" change data format

"G" plot data, continuum and error

"I" interpolate continuum

"J" change y of continuum point nearest cursor

"K" suppress velocity plot caption (toggles)

"M" mark lines

"N" no line marking

"P" command line prompt

"R" replace continuum by mean

"S" suppress error, plot data only

"T" tick mark lines

"U" flag as bad data with errors above cursor

"V" velocity scale, using old redshift

"Z" mark lines at reference redshift

"0" default/extended cursor type (toggles)

"7" extended cross-hair cursor

"!" unknown line

"~" snap to .gif

"}" indicate wavelength regions used (toggles)

(uses same color as residual plot)

.. any other lower case letter for command line prompt

.. any unrecognized character will give the command line prompt, where the options are
as for the plot command sp (and which can be seen by typing a ”?” in the command
window). Note that ”A”, ”D” and ”X” are equivalent to left, center and right mouse
buttons. Other characters may be used for test functions, so don’t expect any other
character to necessarily give you a command line prompt - it is safest to use ”P” if you
want to do that.

You can ask (on the command line) that the continuum be plotted with a particular
colour (at co co 6 will give you purple continuum), and this may contain fits to the data
which are added in to the continuum using gp (see below).

6.1 Velocity plots

One use is stacked plots of absorption lines on a common velocity scale, so you can easily
see if HI, SiIV, CIV are all there together, or if low ionization lines are present, or the
whole Lyman series, or low redshift Mg and Fe, or anything you care to look for. First
you need to set up a file with the ion and wavelengths listed, one per line, like:

H I 1215.6701

H I 1025.7223

14

H I 972.5368

H I 949.7431

H I 937.8035

C III 977.020

C IV 1548.195

C IV 1550.770

N III 989.799

N V 1238.821

N V 1242.804

O VI 1031.927

O VI 1037.616

SiIII 1206.500

SiIV 1393.755

SiIV 1402.770

Then add it to an access list using pf filename, where filename is whatever you have
called it. You can do this for up to 35 files, and select which you use later from a list
which is displayed when you type ”v” or ”u” from a wavelength plot.

If instead of giving a filename you use pf 0 (the 0 is important - a blank will cause a
filename to be asked for) then you can enter a list of (up to 16) lines interactively. You
then enter ions and wavelengths from the terminal, e.g.:

ion, wavelength <CR> to end

MgII 2796

MgII 2803

MgI 2852

Note that you don’t have to give accurate wavelengths for either the file or the interactive
form. The program chooses the ones from the atomic data file which are nearest to the
input wavelength.

With either or both of these set up, you can use pg for velocity plots.

>>pg

plot parameter? (type he for options list)

> sp

sp

plot parameter? (type he for options list)

>

PGPLOT device? (? for list)

> xw

Expand plot if needed: [program is now in cursor mode, so enter letter commands etc
from the pgplot window]

Cursor ("e" to mark edges, "q" when OK)

left mouse button

Channel 19906

right edge..

15

Figure 1: A common redshift plot for high ionization lines, produced
using the line list given in the text.

right mouse button

Channel 24638

Cursor ("e" to mark edges, "q" when OK)

[mark off line of interest] v (in cursor window, with the cursor x-position set where you
want the velocity zero to be)

File ID?

1 hiion.pg

2 loion.pg

3 lowz.pg

.. in plot window

Then type e.g. 1 in the cursor window and a list of possible ID’s from the file hiion.pg will
appear on the plot. Click the left mouse button on the appropriate one and a velocity
scaled plot will appear for all the lines in the list, with each marked. An example is
shown in Fig. 1.

16

If you want to access the interactive list then just type 0 instead of any of the numbers
associated with a file. Then, for the example above, you would get the list MgII 2796,
MgII 2803, MgI 2852 from bottom to top.

You can shift the centre by moving the cursor to a new position and entering ’v’ again,
as often as you want. To look at a particular line in detail, just use the left cursor
button to mark the left and right positions on the screen, making sure the y-position
is about level with the label, and you will get it on a wavelength scale. Using ’v’ and
the appropriate line ID you can go back to the velocity plot if you want to. When you
are fed up with this, ’a’ gives you the full spectrum back – and if you get lost (or the
program does), use ’a’ to restart. ’q’ quits this mode, so you can read in more data or
whatever.

If you are visually seaching for a system, then an easy way to do it is to set up the
lines you want in a file, start with ’v’ or ’u’ as above, and then put the cursor near the
right (for searching up in wavelength) or left (for searching down), and hit ’v’ (or ’u’)
repeatedly until the lines you want in the pattern appear together. In this mode the ’,’
and ’.’ keys have the same effect as ’v’, so, depending on the position of the cursor, you
may find yourself going in the opposite direction in wavelength to the one you expect!
The redshift of the zero velocity line in the plot is given at the top of the pgplot window.

You can send the stacked velocity plots to a postscript file, for which the best approach
is to create one on the screen using ’v’, when you are happy type ’=’, then place the
cursor on the centre of the line you want and type ’v’ again. The interactive screen will
vanish while a hardcopy is done, and then what you sent to a file will appear on the
screen. Since you might want to do this more than once, the files are named in order
pgp101.ps, pgp102.ps etc so you don’t overwrite the hardcopy each time you use ’=’.You
should then print the plotfiles, or examine and print at leisure. If you exceed 99 in a
session I have no idea what happens. If you restart the program, it starts at pgp101.ps
again, so any old one by that name will be overwritten.

You can also send other plots from the interactive plot mode to a postscript file. A way
do this is to set up the display you want, then ’=’, and then type ’w’ to redraw the
plot. An alternative approach is to use the non-interactive plotting routines (’pl’) and
set up a list of commands which will do similar for you, and then either cut and paste
into the command window or set up as a redirected input file. This is the only method
of getting velocity stacked plots with data from multiple files.

If you type ’M’ then wavelength (but not velocity) plots have the line positions from all
ions in the input Voigt profile generating file marked, with identifications. This can be
useful when unravelling messy blended systems. In velocity plots only the tick marks
are displayed.

’Z’ takes the last reference redshift used (from ’v’), and plots the positions of all the
lines in the atom.dat file at that redshift when you replot on a wavelength scale. You
can set the redshift by using

pp z 1.412354

before entering the cursor mode plot. You’ll need to turn it off if you want ID’s from a
file though, using

pp f fort.26

or whatever.

17

If you have an overfull atomic data file so wind up with confusing and irrelevant tick
marks all over the spectrum, then you can make a shorter one and get the program to
use it by typing at. Then you are prompted for a filename. You can also use a shortened
version of the distributed one by:

>>at

Atomic data filename

/(path)/atom.dat short

Using data from : /(path)/atom.dat

>>

With the second parameter, the contents of the file up to the first occurrence of the
comment line

! -- Suppl

are read in, and the later entries are ignored.

6.2 Start files for VPFIT

With the velocity plots described above you can use the cursor to set up start files for
fitting systems using VPFIT. To delineate fit region boundaries, put the cursor on the
left edge in the velocity sgement you are interested in, type b, move to the other end
and type b again, and a line like

%% red2347.fits 1 4825.44922 4839.00928

will appear in the text window. You can do this for as many regions as you wish. Then,
for line ID’s put the cursor where you think a feature might be and type l, and you
should get e.g.

N V 2.896937 0.000000 5.41 0.00 12.704 0.000

Again you can do this for several possible positions. Then all you need to do is cut and
paste into an editor window to produce a file which might contain:

%% red2347.fits 1 4825.44922 4839.00928

%% red2347.fits 1 4841.30859 4854.33545

N V 2.896937 0.000000 5.41 0.00 12.704 0.000

N V 2.897233 0.000000 17.26 0.00 14.407 0.000

N V 2.897659 0.000000 13.45 0.00 14.068 0.000

N V 2.898401 0.000000 8.09 0.00 13.186 0.000

N V 2.901424 0.000000 23.79 0.00 12.895 0.000

N V 2.902389 0.000000 15.46 0.00 13.162 0.000

N V 2.902779 0.000000 5.79 0.00 12.951 0.000

N V 2.903039 0.000000 7.92 0.00 12.318 0.000

This is one of the two formats accepted by the f option (start from file) in VPFIT.

You can also type b,l and h in the wavelength rather than the velocity plots. The b

action is as before - it just prints out a wavelength region against a filename. The ion
associated with l is the one taken from the last velocity plot when you set the cursor

18

on a region and typed w, or used the left cursor to define a wavelength region from a
velcity plot. It is the line in the list appropriate to the region you chose, and it is left
as the default ID for wavelength plots until you go through the region selection from a
velocity plot a further time.

The other format is also catered for. Just use upper case letters B and L instead of the
lower case ones - the only trouble is then that you need the ’*’ list separators, which
you can either edit in or obtain by typing * in the plot window.

In principle this information could be written direct to a file, but if you are anything
like me you’ll backtrack, make errors, and change your mind enough that cutting and
pasting is a quicker option in the long run. However, if you want to write the results of
the b and l commands to a file, then before you start pg set

pp s fgout.dat

and they will be written to a file fgout.dat (which could be anything) in the order in
which you executed them. You can then edit this file, if you can remember which sets
are associated with each other.

7 Modifying the error arrays

A feature (?) of the UVES pipeline is that the error estimates in the data at the bottoms
of saturated absorption lines are too low by a factor of roughly 2. Consequently, even if
the zero level is correct, or corrected (it is normally to high by something up to about
2% of the continuum, but it is wavelength dependent), a satisfactory χ2 will never be
reached when using VPFIT on these features because the fluctuations in the bases of
the lines are significantly larger than the error estimates.

RDGEN has an option for modifying the error arrays to avoid this problem. The ap-
proach is not based on any analysis of the expected errors - all it does is take a function
which is roughly 2 where the signal is near zero, and roughly 1 where the data is close
to the continuum, and multiply the error arrays by this function.

For any pixel i with wavelength wi, data value di and continuum estimate ci the error
esimate ei is modified so that the new value

ǫi = ei ×

[

a +
(

b + c log wi + d(log wi)
2
)

×

(

1 − max

(

0,min

(

1,
di

ci

)))s]1/t

where the user specifies s, t, a, b, c and d. For things to change little when the data is
near the continuum, and by a factor 2 when the data is zero, then it is worth choosing
s = t = 4, a = 1 and a + b such that (a + b)

1

t = 2, so b = 15 if there is no wavelength
dependence (c = d = 0). Those are the default values, but you can feed in any values
for these six coefficients which you feel happy with.

To activate this option on data which has been read in, just type me (for modify error)
and if you have the current version the response will be something like:

19

Modify error & expected fluctuations:

multiply by f=[a+B*(1.0-data/con)**s]**(1.0/t)

where B=b+c*log10(lambda)+d*log10(lambda)**2

for wavelength lambda

If (1.0-data/con)<0, set to zero; if >1 set to 1

Enter s,t,a,b,c,d (need not be integers)

Defaults: 4.0 4.0 1.00 15.00 0.00 0.00

to do nothing, enter q or Q

The correction is applied to BOTH the error array and the array giving the expected
rms fluctuations in the data, if it is present.

Note that you have a last-minute bail-out feature in case you change your mind - just
type ’q’.

There is not a great deal of point in just modifying the error arrays internally. You need
to write them out for VPFIT to use them. For fits files use the wr command (see section
3.2). This can involve shuffling things around a bit in RDGEN, but you don’t need to
do it often. The sequence might be:

>>rd datafile [Read in the data

>>me [modify the error arrays

Modify error & expected fluctuations:

multiply by f=[a+B*(1.0-data/con)**s]**(1.0/t)

where B=b+c*log10(lambda)+d*log10(lambda)**2

for wavelength lambda

If (1.0-data/con)<0, set to zero; if >1 set to 1

Enter s,t,a,b,c,d (need not be integers)

Defaults: 4.0 4.0 1.00 15.00 0.00 0.00

to do nothing, enter q or Q

[Carriage Return gives the defaults

>>wr newdata.fits [write out a new data file

>>cy ew [copy modified error array to workspace

Copy data array ew

>>wr newdata.sig.fits [write out modified error

>>cy re [copy rms fluctuation arry to error

Copy data array re

>>cy ew [modified fluctuation array to workspace

Copy data array ew

>>wr newdata.rms.fits [write out fluctuations

>>cy cw [continuum array

Copy data array cw

Continuum to workspace

error set to zero

>>wr newdata.cont.fits [write out continuum

You may not need to rewrite the data or the continuum, but the above sequence will
give a complete set of files for use with VPFIT.

An alternative for NORMALIZED DATA is to write the file out in a format similar to
that written by the UVES popler package (but without all the data fields to do with
original continuum and clipping information). This is much simpler - after the me just
use wr with a second parameter UV , so

20

>>wr newdata UVES_popler

and the reponse will be

Writing to file: newdata.fits

Wavelength coefficients to header

Wrote UVES_popler file newdata.fits

The file ’newdata.fits’ then contains the data, errors, and a flag which tells VPFIT that
the data is normalized to unit continuum.

8 Column density upper limits

If the redshift and Doppler parameter are determined for some reference ion, for example
CIV, then for other ions within the same region the redshift will be the same and one can
estimate a range of acceptable Doppler parameters b under the assumption that there
is a turbulent component bturb which is the same for all ions and a thermal component
bT which is proportional to the square root of the mass m of the ion. Then the two
components add in quadrature to give the actual Doppler parameter, so

b2 = b2

turb + b2

T.

where bT =
√

m
mref

bT,ref where the subscript ’ref’ is the value for the reference ion.

Possible extreme values for b are then determined assuming that the Doppler parameter
for the reference ion is fully turbulent and fully thermal. In the implementation used
here this range was extended by using the 1-σ error estimates for the reference ion,
so reference Doppler parameters bref ± σ were used and the most extreme values of b

adopted to give the Doppler parameter ranges for each ion.

Using the redshift for the reference ion, and a sequence of Doppler parameters from
the minimum to maximum obtained in this way, a grid of Voigt profiles convolved with
the instrument profile is constructed for the transitions of the test ion available in the
observed range. The line profiles arre compared with the data, and a χ2 determined for
pixels where the Voigt profile was below the data value plus 1-σ, and within 2b of the
line center for each transition. If no pixels satisfy this criterion then the column density
iss increased until some do. The column density limit for each b-value is taken as the
highest value for which the χ2 value over this range had a probability of occurring by
chance of less than 0.16 (corresponding to a 1-σ one-sided deviation, but this can be
changed). The final overall limit which is adopted is the maximum of these over the
range of Doppler parameters. This yields a maximum possible column density for the
ion even in the presence of blends, since it is effectively only the pixels where the trial
fitted profile is too low which contribute to the significance level.

The chance probability criterion for accepting or rejecting possible line profiles is arbi-
trary, so there seems little point in iterating or interpolating to achieve high accuracy.
We adopt a column density step of ∆ log N = 0.05 for log N < 13.5, and double this for
higher values.

21

To implement this in RDGEN first load the spectrum with the error estimates and the
continuum, NORMALIZE TO UNIT CONTINUUM, and then type uc (for upper
column density limits, pixellation as for the data) or uc subpix (gives upper limits with
subpixels used if the Doppler parameters are small - so it is slower).

This results in an input request:

xn,xb,nminf,pchslim,ctype,vres(km/s),nmdef,bmin

[1 2 5 0.160 cmin 6.70 3 0.50]

for which the easiest response is a carriage return, which yields the default values given
in the parentheses. This means that

• xn=1 For comparison with the data, only data below the fit + xn ∗ σ is included.
The default is 1σ.

• xb=2 The comparison region is ±xb∗b from the line centre, where b is the Doppler
parameter for the lines.

• nminf=5 The minimum number of pixels in the comparison range for all lines used.

• pchslim=0.16 Is the (one-sided) probability limit for the χ2 value for a trial col-
umn density and Doppler parameter to occur by chance. The value 0.16 corre-
sponds roughly to a 1σ upper limit.

• ctype=cmin Use noise estimate if no line is detected, so continuum bias is less
important. To turn this off, type nocmin.

• vres=6.7 Instrument resolution in km s−1.

• nmdef=3 Min number of pixels if a single line is used.

• bmin=0.50 Is the minimum b-value allowed for the search.

The ones you are most likely to change are the probability and the resolution - you’ll
need to enter values for the others under those circumstances.

Responding ? gives some help.

After this you get

Ion,bval,(err),redshift,newion,(lambda,lambda...)

Here you must enter something - the reference ion, normally the one you have used to
determine the redshift, its Doppler parameter (with an error if you wish), the redshift,
and the ion which you wish to determine an upper limit for, followed by a list of wave-
lengths to be used to set that upper limit. If the wavelengths are omitted, it just takes
the first two from the atomic data file and uses those. If you want something different,
give the wavelengths. These need not be accurate wavelengths - the program searches
the atomic data list for the nearest, and uses those.

So, given a CIV with Doppler parameter b = 4.0 ± 0.2 at z = 2.385355 for which an
upper limit for OVI is sought an appropriate entry would be

22

CIV 4.0 0.2 2.385355 OVI

Then you get

.. third parameter taken as bval error

Using 1031.9261 1037.6167

1 4.2 12.05 1.17690025 23

2 3.29246625 11.95 1.19452383 18

O VI 2.385355SZ 0.000000 4.20SB 0.00 <12.050

The intermediate lines give trial Doppler parameters and limit column densities (with
χ2 and number of channels) for those Doppler parameters, and the final line gives the
parameters for the highest column density case found. The format looks a bit strange,
but is chosen to be compatible with the summary output files from VPFIT, so there are
some letters (SZ & SB) and zeros which mean nothing here.

If you are using the potentially slower sub-pixel mode, then the input ion request be-
comes

Ion,bval,(err),redshift,newion,(lambda,lambda...)

(or filename, column)

so instead of wavelengths on the command line you can have a file of the ones you want
to use, one per line. So if you wanted to look for molecular hydrogen, J=0, you might
enter

H2J0 5.0 4.0 2.059331 H2J0 temp.in 2

where temp.in might contain e.g.

H2J0 1108.1273270 0.001664570 1.868E9 2.01588 -0.00800319 ! L 0 R(0) 1a

H2J0 1092.1952340 0.005783580 1.741E9 2.01588 -0.00092454 ! L 1 R(0) 1a

H2J0 1077.1387420 0.011667900 1.632E9 2.01588 0.00558220 ! L 2 R(0) 1a

H2J0 1062.8821370 0.017895200 1.536E9 2.01588 0.01156759 ! L 3 R(0) 1a

H2J0 1049.3674390 0.023192900 1.450E9 2.01588 0.01706801 ! L 4 R(0) 1a

H2J0 1036.5458060 0.026833700 1.370E9 2.01588 0.02211196 ! L 5 R(0) 1a

H2J0 1024.3739540 0.028708500 1.300E9 2.01588 0.02672449 ! L 6 R(0) 1a

H2J0 1012.8130270 0.029702000 1.200E9 2.01588 0.03092982 ! L 7 R(0) 1a

H2J0 1008.5519150 0.015349300 1.180E9 2.01588 -0.00476718 ! W 0 R(0) 1a

which was simply cut and pasted from the atomic data file. The output then can look
like

.. third parameter taken as bval error

Using 17 wavelengths from file

Substeps: 7

9 lines in 9 spectral regions

b log(N) chi2/n n

1 1.000 17.30 0.864 38

2 1.442 16.70 1.062 28

23

3 2.080 15.90 1.019 32

4 3.000 15.50 0.932 35

5 4.327 15.30 1.030 56

6 6.240 15.10 1.125 71

7 9.000 14.90 0.827 61

H2J0 2.059331SZ 0.000000 1.00SB 0.00 <17.300

Some results using this are given by Schaye et al. (MNRAS, 379, 1169, 2007 = astro-
ph/0701761), and the description of the method here is essentially the same as is given
in their Appendix.

9 Other programs

9.1 Auto-startup files for VPFIT

If you have a lot of Lyα simulations it is a pain to have to set up fitting regions by hand.
If the simulationed spectra are small enough you can cover the whole lot in one fitting
region, of course, but if there are more than about 80 - 100 lines the fitting process can
be too slow. Ther is an ancillary program AUTOVPIN which can set up region limits
for you, based on where there might be continuum regions. It takes output from the
abs (find absorption lines) option in RDGEN (the results of which are usually written
to fort.9), and uses this to generate region limits. It is not at all sophisticated - all it
does is try to extend the regions containing the absorption lines listed by abs by a bit,
subject to a constraint that they should not overlap. If they do, it merges them.

To run it you first need to ’make autovpin’ sometime, and then

$./autovpin

Spectral data filename?

spectrum.fits

linelist filename? [fort.9]

output filename? [vpin.dat]

vpin.dat

List order as input, or reversed? (i/r) [r]

sigmathres,pbtythres,maxext,minext

[4.5,0.0,20,5]

5 0 20 9

Maximum redshift, # Lyman series lines?

(leave second one blank if just want Ly-alpha)

3.05

Using data from : /home/rfc/cflib/vpfit9.3/atom.dat

Atomic data table contains 679 lines

1 Lyman series lines used

54 regions given from a total of 93

$

The spectral data filename is needed only to put it into the VPFIT startup file, and it
does not need the .fits part which is put in automatically by VPFIT if it is omitted.

24

The real work is done using the fort.9 file, where regions containing complexes with
significance >sigmathres and chance probability >pbtythres are included. The actual
limits to the regions are extended by the minimum of maxext and half the distance to
the next complex on either side to include some continuum, unless this extension is less
than minext. In the latter case the two regions are merged into one. In the example
above a possible 93 regions in fort.9 became 54 after such merging.

The vpin.dat file then contains something like

%% spectrum.fits 1 4862.49023 4880.18213

%% spectrum.fits 1 4855.69092 4860.35986

%% spectrum.fits 1 4826.90967 4855.6499

%%

which is fine as a startup file for VPFIT. In the absence of any initial values it guesses
Lyα based on an a rough internally generated line list, and goes on from there. As
suggested by the above, you can put in the Lyβ, γ etc regions as well, but this has not
been used much, so you should treat it as largely untested.

25

A Command list

The following is a list of some of the commands within RDGEN, and brief one-line
descriptions of what they might do. Some ask for additional information, so if you are
not sure what something does, try it and see if the prompts which follow are obvious.
It is hard to do any permanent damage - unless you use one of the two data write (wr
or wt) routines and over-write something of course.

ab generate absorption list (p1:file)

ad linearize and sum spectra

at change atomic data file

bb generate a black body spectrum

cy copy data arrays

dc divide data by continuum (p1: low threshold)

ex exit program

fq list fits files

gm generate metal list and display

gp generate Voigt profiles in continuum

hd dust extinction from Hb/Ha

he (or ?) give a list of commands

le set data array length

lo exit program (for IRAF devotees)

mc multiply data by continuum

me modify error arrays

mf median filter data, result to continuum (p1: no. of pixels)

mu multiprocess files

no add noise to continuum -> new spectrum

pc close plot device

pf linelist file name input

pl plot the data (same as sp)

pg plot with cursor control

pw print wavelength coefficients

qu quit program

rc recall internal data

rd read FITS, IRAF or ASCII data file

sm (p1) boxcar smooth the data, width p1 pixels

sp plot the data

st store data internally

sw swap spectrum with stored one

sz data stacker

tp tickmarked velocity plot in a standard format

uc estimate upper limit to the column density for an ion

un set continuum to unity for current data

wa wavelength coefficient reset

wl set linear wavelength coefficients and length

wr write an IRAF data file

wt write data as a text (ASCII) file (p1: filename)

zr redshift correct to rest wavelength (p1: redshift, p2:n,b,[i])

zt ztable function

< redirect input (p1: filename)

26

B Environment variable associated files

B.1 RDSTART

The following is an example of a file containing startup commands which would be
executed when RDGEN starts if the file were associated with the environment variable
RDSTART:

pf /home/vpfit/vpfit9.5/pgfiles/hiion.pg

pf /home/vpfit/vpfit9.5/pgfiles/loion.pg

pf /home/vpfit/vpfit9.5/pgfiles/lohi.pg

pp s fgout.dat

?

fq

The actions are to

• read three files of parameters for velocity stacked plots

• set up guess parameter file as fgout.dat, so guesses from appropriate cursor mode
commands will be written there

• print the shortened help list

• print out the available FITS files in the working directory

The hiion.pg file might contain, for example,

H I 1215.6701

H I 1025.7223

H I 972.5368

H I 949.7431

H I 937.8035

C III 977.020

C IV 1548.195

C IV 1550.770

N V 1238.821

N V 1242.804

O VI 1031.927

O VI 1037.616

SiIII 1206.500

SiIV 1393.755

SiIV 1402.770

When it is used in curser plot ’v’ mode (see Section 6 this gives a plot such as that
shown in Fig.1.

27

B.2 VPFPLOTS

The following file, when associated with the environment variable VPFPLOTS, sets the
continuum color to green, error to red, tick marks to turquoise, and region markers to
yellow. The data display is set to histogram mode. This file is re-read for every plot, so
if you want to change any of these you need to do it every time. See subsection 5.5 for
more details.

at co co 3

at er co 2

at ti co 5

at fi co 7

at da ty hist

28

