
VPFIT 10.0

Bob Carswell, John Webb

September 5, 2011

Contents

1 Introduction 4
1.1 General terms of use . 4

2 Acknowledgements 4

3 Obtaining the program 5
3.1 Download source . 5
3.2 Compiling and linking . 5

4 Spectral data file format 7
4.1 FITS files . 7
4.2 FITS data header . 9
4.3 ASCII file format . 9
4.4 Special data formats . 10

5 Dealing with data problems 11
5.1 Changing data error estimates . 11
5.2 Rescaling error estimates . 11
5.3 Bad pixels . 12

6 Getting started 13
6.1 Before starting . 13
6.2 Interactive mode . 13

6.2.1 Single region . 13
6.2.2 Multiple regions . 19

6.3 Running from file . 23
6.4 Optional parameters . 24
6.5 Use for fine structure constant . 26
6.6 Velocity precision from a portion of spectrum 27

7 Setup parameter file 29
7.1 Tied parameter letter . 29
7.2 Parameter limits . 30
7.3 Miscellaneous . 32

7.3.1 Stopping criteria . 32

1

7.3.2 Fixed flag . 32
7.3.3 Progress monitor . 32
7.3.4 Internal variable scaling . 33

7.4 Line parameters . 33
7.4.1 Guess line . 33

7.5 Internal variables . 33

8 Spectral resolution 34
8.1 Resolution in FITS data header . 34
8.2 Specifying resolution in startup files . 37
8.3 Resolution unspecified . 38

9 Output 39
9.1 Screen output . 39
9.2 Summary output . 40
9.3 Looking at the fit results . 41

10 Subpixel profiles 43

11 Fixed & tied parameters 44
11.1 Fixed parameters . 44
11.2 Tied parameters . 44
11.3 Temperature estimation . 46
11.4 Summed column densities . 47
11.5 Common pattern relative ion abundances 49

12 Higher accuracy Voigt profile 50

13 Reliability of parameter and error estimates 50

14 Atomic data 52
14.1 File format . 52
14.2 Special ions . 52

14.2.1 Unidentified lines . 53
14.2.2 Region wavelength shifts . 53
14.2.3 Continuum adjustment . 54
14.2.4 Zero level adjustment . 55

14.3 Extra parameters . 56

15 Fitting simulated data 57
15.1 Single wavelength region fits . 57

15.1.1 Single file multiple simulations 60
15.2 Multiple wavelength regions . 62

15.2.1 Single ions . 62
15.2.2 Two ions . 63

16 RDGEN with VPFIT: their use together 64

2

17 Fitting the Lyα forest 74

A Ancillary programs 77
A.1 FITS header editing . 77

B Rebinning and combining spectra 78
B.1 Error estimates . 78
B.2 Biases in combined datasets . 80
B.3 Suitable weights for combining spectra 83
B.4 Wavelength bias . 84

3

1 Introduction

The VPFIT program enables you to fit multiple Voigt profiles (convolved with the
instrument profiles) to spectroscopic data. If you don’t want to do this, read no further.
If you want to display data, play around with data and models, try ”χ2-by-eye” fits,
display the result of a proper fit, do pretty plots, etc., you might prefer a program
written by Joe Liske called vpguess (see http://www.eso.org/∼jliske/vpguess/). The
vpguess program can also be used to provide initial estimates for the VPFIT program.

This description is evolving. It started out as a a brief reference for the bits which
are changing, but some cutting and pasting from the original descriptions (usually with
minor changes) has also occurred. So it is uneven, and in places is probably totally
obscure.

There is also information at http://www.ast.cam.ac.uk/∼rfc/vpfit.html. Ultimately this
document should include all of what in the various pages on that website, but that is
not yet the case. Where something appears there, but not here, it probably hasn’t been
tested for a long time though!

1.1 General terms of use

Copyright c© 2007 R.F.Carswell, J.K.Webb

Contact: rfc(at)ast.cam.ac.uk

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. For a copy of the GNU General Public License see the information which
comes e.g. with the GNU Emacs editor, look at http://www.gnu.org/copyleft/gpl.html,
or write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139,
USA.

2 Acknowledgements

The development of VPFIT would not have been possible without major contributions
from Andrew Cooke, Mike Irwin, Julian King, Joe Liske and Michael Murphy. We are
very grateful for all their work. We also thank the many others have also helped with
suggestions, comments, questions, etc.

4

3 Obtaining the program

3.1 Download source

Inevitably, the VPFIT program evolves, and you should make sure the description you
are using apply to the version you have. This description applies to the version in
the anonymous ftp space pub/rfc on ftp.ast.cam.ac.uk as vpfitnnn.tar.gz, where nnn

is the version number as given on the first page of this document. If it is not there,
then (unusually) the documentation is ahead of the adequately working version of the
program, or this is an old document and you should be looking at a more recent one. For
those who still have older versions of the program an earlier description may be more
appropriate. Hopefully things should generally be upward compatible through versions,
so anything which works on an older one should work with a later version, and give close
to the same answers. The tarfile also contains the RDGEN program for general spectral
plotting, modifying, visualizing and interfacing with VPFIT. It is just a collection of
routines which have been found to be useful. If you don’t want it ignore it, otherwise
try looking at the rudimentary documentation.

3.2 Compiling and linking

After you gunzip and extract the tarfile, you will need to edit the makefile to reflect
where the PGPLOT and CFITSIO libraries are held. Since different incantations
are used in different places to access these the makefile shows the IoA version (where
PGPLOT can migrate, but is aliased), the ESO version (now somewhat dated, where
PGPLOT and CFITSIO are in /scisoft), and a linux version where they are in some
arbitrary area.

Before compiling any of the code it is probably worth trying source vppreset, since
this saves you having to set environment variables. It is important that this be done
from whatever directory the source files are in - all it does is edit one line in one routine
(vp srcpath.f) to reflect the directory which contains the source files, and the ancillary
files which come with the programs. You could equally well do this yourself, just editing
the ’ ’ to become the VPFIT source directory - still in quotes, so it becomes e.g.
’/home/userx/programs/vpfit’. If that fails, or you don’t like what it gives you, then
you can still use the environment variables (see Sections 6.1 and 7) for any or all of the
files, since they take precedence.

At least on the machines I use ’make vpsol’ makes a Solaris version on the IoA cluster,
’make vpfit’ used to make the same thing at ESO (now a while ago), and ’make vpflx’
makes the Linux version, and ’make vpmac’ one for a Mac. You made need to change
the various system libraries in the makefile to reflect what is normally used for a Fortran
compilation at your site. Apart from CFITSIO and PGPLOT, no other external libraries
are needed. For RDGEN ’make rdsol’, ’make rdgen’, ’make rdglx’ and ’make rdmac’
give the corresponding versions.

Makefile will yield the executable code (after you get it right). At this stage it is worth
trying to run it just to see if there are any problems, like the instant response: ‘vpfit:
Not enough memory’. If this happens, then increase your swap space. Or you could
edit the ‘vp sizes.f’ file to have smaller array sizes - in the default version they are large

5

enough to handle most things I am aware of. In particular the data arrays are 208000
pixels long, which hopefully is enough. If you do change ‘vp sizes.f’ then you should
’touch *.f’ before running the makefile, to ensure that all routines are recompiled (some
systems take care of this automatically, and some don’t).

The default version uses fast-math (see makefile listing), and this has occasionally caused
problems. fast-math can be replaced by O5 if you experience difficulties, and if the fast-
math and O5 versions produce different results, then it is possibly best to stick to
the -O5 version. From the limited tests which have been done, the -O5 version might
overestimate the errors in difficult cases (see Section 13), so is conservative in that
respect.

6

4 Spectral data file format

4.1 FITS files

Spectral data for VPFIT is normally expected to be in the form of FITS files containing
the wavelengths, flux values, flux error estimates, and continuum values. Some of these
can be omitted if appropriate FITS header information is in the data file, as detailed
below. Various header items are may be required, depending on the data format and
how the wavelength scale has been set up.

The data files which are needed are:

• The spectrum itself may be in a FITS file, in 1-D or echelle format, as <file>.fits
or as an old-style IRAF file, <file>.imh and .pix.

• The 1-σ error array must be available, and may also be in a FITS file. It is
identified by the header entry SIGFILE in the FITS header for the spectrum file,
which we here call <NAME>.fits. If that is absent, then the program tries looking
for <NAME>.var.fits, <NAME>.sig.fits, <NAME>.err.fits and using whichever
it finds first before giving up and prompting.

If you don’t have an error file, then a carriage return (denoted <CR>) response to

the prompt here results in σi =
√

max(di, 0.2d̄), where σi is then used as the error

estimate at pixel i, di is the data for the ith pixel, and d̄ is the mean value over all
pixels. This is not desperately useful, but is better than nothing in the sense that
not all the data will then be ignored. If the error file is absent, you will have to
be very lucky (or unlucky) to get χ2 values which look at all sensible. There is no
provision for a quality array, but bad data pixels may be flagged by giving them a
negative error (or variance), and the corresponding data is then ignored entirely.

• The continuum estimate specified by CONTFILE in the spectrum FITS header,
or, if that is absent, <NAME>.cont.fits. The program prompts if that fails, and
a <CR> response to the prompt gives a unit continuum (useful for renormalized
data). If you have normalized your data to the continuum, then CONTFILE set
to ‘unity’ (or ‘UNITY’) stops that prompt, and gives unit continuum (so don’t
call a data file ‘unity’, it will never find it).

• Much of the spectral data to be fitted is the sum of several exposures which have
been taken at different times, and so possibly with different heliocentric corrections
to the wavelength scale. In such cases it is common practice to sum the data onto
a common wavelength scale, interpolating the data from each exposure on to a
common set of data bins. This inevitably results in some smoothing of the data,
and so the root-mean-square noise (RMS) fluctuations are usually smaller than
one would expect from the the data error estimates. If the error estimates based
on independent data pixels are used the resultant χ2 is smaller than it should be.
In some sense this does not matter, since if you are aiming for a normalized χ2 ∼ 1
all you are doing is assuming that the S/N is worse than it really is. However it
does mean that you are not making the best use of the data you have.

7

A way of dealing with this problem is to provide a separate file of expected RMS
values which has been created from the 1-σ error estimates from the raw data files,
using knowledge of the interpolation onto the chosen wavelength scale. If such a
file exists, it is specified by the data file header item RMSFILE, or, if that item is
absent, <NAME>.rms.fits is used (if present). The RMS values are appropriate
for the computation of the effective χ2 =

∑

(di − fi)
2/s2i , where fi is a fit value at

i, and si the RMS estimate there. Again this is not quite right, since neighbouring
points are now correlated. However, if there are a sufficiently large number of
pixels in the fit region(s) then it provides a reasonably good approximation.

The 1-σ error file is still needed - it provides the normalization for the parameter
error estimates which VPFIT gives. It is also the file which contains the appro-
priate quantities for inverse variance weighting when combining datasets, and so
is the one which is usually provided by data extraction packages.

If there is no RMS file available, then the 1-σ error estimates are used.

Most standard publicly-available packages do not provide this file, but it can be
generated. See appendix B for a description of what is needed. The program has
been tested in this mode using data from Michael Murphy’s UVES popler (post-
pipline echelle reduction) package, which incorporates the methods described in
appendix B.

For those who are concerned about correlated pixels and χ2, rest assured that you
are not the only ones. You can test that what has been here is at least reasonable
by making an artificial spectrum with independent noise in each of the pixels and
then rebinning e.g. with a half-pixel shift, so that each of the new pixels is an
average of the old ones, so the apparent noise goes down by

√
2. You will then find,

not surprisingly, that the normalized χ2 for fluctuations about the continuum level
with the original error array goes from ∼ 1 to ∼ 0.5. You can put in absorption
lines to fit and find the same result of course. The RDGEN package contains some
facilities for generating such spectra if you want to try it.

• The wavelengths associated with each pixel can be specified in a variety of ways,
either in the FITS header for the data as wavelength coefficients, or as a table in
a separate FITS file. In more detail these are:

– A FITS file of wavelengths, one per spectral data pixel. The header item
WAVFILE in the FITS spectrum file gives the filename, or, if that is absent
then <NAME>.wav.fits is used if it is present.

– For a linear wavelength scale the base wavelength and increment can be spec-
ified in the header. See section 4.2

• Spectral resolution information may be specified as a header item (RESVEL [fwhm
in km/s]), or in a file in a subdirectory ’database/’ of the data directory which is
picked up from the header as well (RESFILE filename). Pixel-based instrument
profiles are also catered for. The various options are described in section 8.

8

4.2 FITS data header

The FITS header for the spectral data file will usually contain the standard items, e.g.

SIMPLE T file does conform to FITS standard

BITPIX -32 number of bits per data pixel

NAXIS 1 number of data axes

NAXIS1 38528 length of data axis 1

EXTEND T FITS dataset may contain extensions

If the wavelength scale is linear then the coefficients may also be in the header

CRPIX1 1 Reference pixel

CRVAL1 3050. Central wavelength of that pixel

CD1_1 0.05 Wavelength increment per pixel

DC-FLAG 0 0=linear, 1=log wavelengths

or, if you have equal log wavelength intervals, then you might have

CRPIX1 1 Starting pixel (1-indexed)

DC-FLAG 1 Linear=0, Log-linear=1

CRVAL1 3.51665385452534 log10 Central wavelength first pixel

CD1_1 3.62161104717198E-06 log10 increment per pixel

There have been various formats for wavelength information in various IRAF packages
over the years. Most are recognized, and if you come across one which is not then you’ll
soon know, most likely when the program asks for wavelength information.

Other header items might be:

AIR

.. if this is present then air wavelengths are assumed, and a conversion is performed to
vacuum within VPFIT.

VHELIO value Apply heliocentric correction (value) to wavelengths

These are rarely used, and have not been rechecked for a while. To be sure of what you
are doing it is probably best to apply any such corrections to the data before entering
VPFIT.

4.3 ASCII file format

The data may be in an ASCII table consisting of up to five columns of ascending wave-
length, spectrum, error estimate, continuum and fluctuation estimate. It is assumed
that the wavelengths are vacuum, heliocentric corrected, and any scaling of the error
estimate has been applied. You can specify the spectral resolution by inserting a line
’RESVEL nnn’ anywhere in the file, where nnn is the FWHM in km/s. The input
terminates on detecting the end-of-file. Sample input might look like:

9

Pks0237-233 subset

RESVEL 6.6

4990. 0.946703 0.03102309

4990.04 0.9681857 0.03154853

4990.08 0.9858243 0.03178264

4990.12 0.9543419 0.03165093

4990.16 0.918863 0.03112572

4990.2 0.9460486 0.03140076

4990.24 0.9262011 0.03116661

4990.28 0.9371514 0.03115548

4990.32 0.9425622 0.03101928

........

Note that this example has only three columns. If the continuum column is blank, then
the continuum is taken to be unity, and fluctuations = error.

Comment lines can be present also. Any lines starting with ‘!’ or ‘#’ are ignored, so
any details you want may be included.

IMPORTANT: If you are using this option, it is vital to make sure that the wavelength
array length is large enough to hold a table of wavelengths. Under normal circumstances
this will be true, but if the wavelength space has been restricted you may have to change
it. Edit vp sizes.f before compiling so that the last line of the section

* MAXimum Wavelength Coefficient Order

* This is also the array size for wavelength tables, so should be

* the same maxfis if that is the way the wavelengths are stored.

integer maxwco

parameter (maxwco = 30)

becomes

parameter (maxwco = 125000)

(where 125000 is an example maxfis).

FURTHER WARNING: With wavelength tables like this you could in principle store
things in any order. Please don’t - the program assumes an ordered sequence of increas-
ing wavelengths. The other thing you could do is have large gaps in the data, like finish
at 5000 A and restart at 8000 A because you don’t see any point in keeping information
in between. This is not handled at all either, and it is better to keep the data as separate
files. VPFIT is fine with files from all over, but does not handle gaps at all well (since in
generating narrow profiles it resamples the pixels to make the Voigt profile, and assumes
slow changes in pixel width as you go from one pixel to the next, estimating the width
by looking at the wavelength midpoints between pixel centres).

4.4 Special data formats

FITS data files written by Michael Murphy’s UVES popler (post-pipline echelle reduc-
tion) package are recognized and read. These files contain the spectrum (normalized to
a unit continuum), error estimate and RMS fluctuation estimate.

See http://www.ast.cam.ac.uk/∼mim/UVES popler.html for more details.

10

5 Dealing with data problems

5.1 Changing data error estimates

A feature (?) of the current UVES pipeline is that the error estimates in the data at the
bottoms of saturated absorption lines are too low by a factor of roughly 2. Consequently,
even if the zero level is correct, or corrected (it is normally to high by something up
to about 2% of the continuum, but it is wavelength dependent), a satisfactory χ2 will
never be reached when using VPFIT on these features because the fluctuations in the
bases of the lines are significantly larger than the error estimates.

RDGEN has an option for modifying the error arrays to avoid this problem, and writing
out the results for use with VPFIT. See the RDGEN description for details. The ap-
proach is not based on any analysis of the expected errors - all it does is take a function
which is roughly 2 where the signal is near zero, and roughly 1 where the data is close
to the continuum, and multiply the error arrays by this function.

The cursor mode plotting package in RDGEN also has options for modifying the error
estimates (and data, continuum...) on a general or pixel-by-pixel basis. Again the details
are given in the RDGEN document.

5.2 Rescaling error estimates

Unless you have access to some package which produces estimates for the fluctuations
in the rebinned data as well as estimates for the S/N based on photon counts, you will
probably need to adjust the error array associated with the data array if you want to
obtain normalized χ2 values ∼ 1 for an appropriate fit. You can do this by (in order of
precedence):

• Set up a file with the expected data fluctuations, pixel by pixel, as described in
section 4.1. UVES popler (Section 4.4) does this automatically.

• Set up an ASCII file of wavelengths and data σ/fluctuation values in the subdi-
rectory ’database’ relative to the location of the data, e.g. ’sigscales.scl’. Insert
into the FITS header for the data

SCLFILE sigscales.scl

and VPFIT will pick up the values and adjust the data σ array by interpolating
on these factors.

The format is wavelength, scalefactor, anything you like (since only the first two
numbers are read) on each line, with fields separated by one or more spaces.
Leading spaces are ignored. So the contents might look like

3300.0 1.35

3600.00 1.3

3888.0 1.25

4500.10 1.3 0.996812 1.66707E-02 2.167191E-02

6800.0 1.25

11

VPFIT then wavelength interpolates these values and divides them into the data
1-σ estimates to generate an array of expected fluctuations, pixel by pixel, and
uses these to generate the χ2 for the difference between the data and the Voigt
profile fit. For wavelengths outside the range in the file, the nearest scale value is
used.

If the FITS header contains the SCLFILE field, and the file itself is not present,
then a single scalefactor is prompted for and used for the whole wavelength range.

If a data fluctuations file (datafilename).rms.fits exists, or a file of a different name
is indicated by RMSFILE in the FITS data header, then the SCLFILE pointer is
ignored and the fluctuations file is used.

• In the VPFSETUP file (see section 7) the line

sigscale 1.3

will result in a single scalefactor (1.3) being used to generate estimated fluctuations
from the σ values by dividing by 1.3 for the whole wavelength range. This applies
ONLY if neither of the options described above are used.

• You can apply a global correction to the error array in RDGEN using

em 1.25

which results in the whole error array being multiplied by 1.25. You will then
need to write the results out as a .fits or ascii file for use by VPFIT. This last
one is useful particularly for datasets where the error estimates provided by the
extraction package are wrong, though you do need to know what they should be!

5.3 Bad pixels

These are flagged by negative or zero values of either the data error or, if present, the
fluctuation estimates (i.e. expected RMS values). You will need to edit the σ-values if
there are bad pixels. All pixels flagged in this way are ignored.

12

6 Getting started

6.1 Before starting

Before starting VPFIT needs to know where the atomic data is held. This is done via
an environment variable ATOMDIR, which gives the path and filename to the relevant
file (see Section 14) e.g. by

setenv ATOMDIR ’/home/userid/vpfit/atom.dat’

or wherever you’ve put it, and whatever you’ve called it. You should do this before
starting VPFIT if you are not using the default option.

You might like to change the plot colours so that data, error and continuum may be
distinguished as well. This can be done at display time, but if you

setenv VPFPLOTS ’/home/userid/vpfit/vp splot.dat’

before starting, then for every plot this file is read and used to reset colours. The options
for the pl command in RDGEN are supported (see RDGEN description), though since
VPFIT holds only the subsets of the data it needs for fitting not the range options are
not generally useful as presets. It uses PGPLOT colour indices, so (against a black
background) for white data, a green continuum, red error, light blue tick marks and the
data plotted as histograms rather than curves it could contain

at co co 3

at er co 2

at ti co 5

at da type hist

You can also reset e.g. the continuum style to dot-dash lines by at co st 3 there if
you want to. With these you should be able to get a reasonably clear display of the fit
to the data.

There are various other parameters to VPFIT which can be changed by using a setup
file associated with the environment variable VPFSETUP. These are probably best left
alone if you are an absolute novice in the use of VPFIT, but you will probably want to
change some things later. They are described in Section 7.

6.2 Interactive mode

There is an interactive mode for setting up initial guesses, which can be bypassed if you
have selected fit regions and some rough guesses from some other program. This can
be done much more flexibly using RDGEN, which comes with the VPFIT tarfile. This
does involve learning how to use another program, but setting up the fit regions and
initial guesses is considerably less primitive than the interactive mode described below.
A description of RDGEN is provided as a separate document.

6.2.1 Single region

After starting VPFIT and its general preamble you will see a list of options, followed
by a > where the program awaits a response. As anywhere in the program, defaults are

13

given in square brackets - these are the values taken if a carriage return is used.

options: <CR> for previous value

I - interactive setup and fit

F - run from an input file

D - display profiles from input file

? for help

option (key) (key)...

> i

Column density (n), logN (l) or emission (e), scalefactor [l, 1.0]

>

filename :

spectrum number: 1

Filename for data?

> sample.txt

...

The i is for entry into interactive setup mode, a carriage return at the second > means
it will work in log column densities, and the filename for the data is here sample.txt.
An ASCII data file which is provided in gzipped form with this description, so you can
try a few things for yourself if you want to. Note that you are unlikely to get exactly the
same results since you will almost certainly choose slightly different wavelength region
limits. You are also are unlikely to provide the same initial guesses, so the convergence
history will also be a bit different.

This spectrum is read in, and then you have to isolate fitting regions and provide starting
estimates:

Plot? [y]

>

plot parameter? (type he for options list)

>

PGPLOT device? [/xwindow]

>

Expand plot if needed:

Cursor ("e" or left button at edges,

"q" or right button when OK)

Cursor ("e" edges, "q" OK)

In interactive mode it would be bizarre indeed to answer ’no’ to the first question, but
in multiple cases it sometimes saves replotting.

The first 1000 or so pixels are now plotted in a separate window, so you should see
something like that shown in Fig 1.

Control is now transferred to the plot window. There are more commands than the
short list given for isolating the part(s) of the spectrum you are interested in - just type
’?’ to get a list. They are:

Left mouse button, or "e", expands plot

Center button, or "r" replots

14

Figure 1: A sample spectrum using VPFIT interactive mode. The green
line is the continuum level.

Right button, or "q" to exit

"." shift range up

"," shift range down

"a" plot whole array

"d" demagnify by factor 2

"y" max y from cursor

"Q" abandon this region

.. any other lower case letter for command line prompt

You can now isolate the feature of interest. For example, the redshifted Lyα at 3926 A
could be isolated by clicking the left mouse button with the cursor at 3923 A, and then
again at 3929 A. The y-position does not matter (provided of course that the cursor is
in the data plot window!). The dialogue is then

Cursor ("e" edges, "q" OK)

Channel 590

right edge..

Channel 775

Cursor ("e" edges, "q" OK)

When you are happy that the region displayed contains the region you want to fit over,
click on the right mouse button (or type ’q’), and then you get

Mark region in which data is to be fitted:

left limit (space, or left button, when ready)

right limit

Region limits: 3923.500A (channel 605) - 3928.508A (757)

15

Channels 605 757

Vacuum wavelength for start of chunk is 3923.50933

In the graphics window

Line 1 : ion, lamda0? or <CR> to end list

This gives you the fitting region limits, and asks what lines you want to put there. You
can enter parameters in the order listed by hand if you wish, but any information which
is missing may be entered by using the cursor. So, still with the cursor in the data
window, enter e.g.

HI 1215

and the response is

Wavelength used: 1215.6701

set cursor x- wavelength, y- base of feature

and click the left button on the mouse. The x-position of the cursor is taken as the
observed wavelength for the line center so the (initial) redshift is determined, and the
y-position is provides a line center optical depth estimate when its value is compared
with the continuum value for that point. The cursor then moves up to an estimated half
optical depth level, with

.. and now half width at half (optical) depth

and you should then go to either one side of the line or the other and click again to give
it an estimate for the line width. You then get log column density, Doppler parameter
and redshift estimates, and a chance to put in more lines, so the text screen output with
line IDs etc from the plot window might look like:

Estimated vac wavelength & z are 3925.49121 2.22907606

13.3632225 36.1756785 2.22907606

Line 2 :ion, lamda0, N,b,z? <CR> to end

.. in the graphics window

HI

Wavelength used: 1215.6701

set cursor x- wavelength, y- base of feature

.. and now half width at half (optical) depth

Estimated vac wavelength & z are 3926.31006 2.22974963

12.8688193 28.9873807 2.22974963

Line 3 :ion, lamda0, N,b,z? <CR> to end

.. in the graphics window

HI

Wavelength used: 1215.6701

set cursor x- wavelength, y- base of feature

.. and now half width at half (optical) depth

Estimated vac wavelength & z are 3926.97363 2.23029548

12.1335024 26.5826797 2.23029548

Line 4 :ion, lamda0, N,b,z? <CR> to end

.. in the graphics window

Include other data? y, n (def),

(or sf for more from the same file)

>

16

The carriage return terminates the process, and returns control to the text window.

The wavelengths need not be entered accurately - VPFIT chooses the nearest wavelength
in the atomic data table (see section 14). If you neglect to give a wavelength at all, it
chooses the first one in the list for the given ion. Also, elements with single letter names,
like hydrogen, need not have a space between the element and the ionization - ’HI’ and
’H I’ are equally acceptable.

There is another minor short-cut. Entering ’*’ instead of ’HI’ just repeats the last one
entered, so the second and third ion/wavelength entries could equally well have been
just *.

Note also that if you try to type the line parameters or ID’s in the VPFIT command
window, as opposed to the PGPLOT window, the program will ignore them as line
ID’s and try to save them as commands. This is not useful, and can be confusing.
It was done this way so that you don’t have to oscillate between windows, as well as
keyboard/mouse, when entering in a number of lines. What you type is reflected in the
command window so you can see what you are typing. The backspace or del keys can
be used to correct mistakes, though if you do use these then the ID line being typed
goes on to a new line in the command window .. so the last line you see there is the
one which is being entered as the line ID, preceded by a history of your mistakes which
are ignored! However, this ’feature’ can be a real pain if you have a system (like a Mac)
where the window focus following the mouse pointer is not an option.

Carrying on with this example, if you don’t want to include other regions in the fit
just type ’n’ to the ’Include other data?’ question, and the program will now iterate to
determine the best fit Voigt profile parameters for the three components if you tell it to:

> n

Continue (c), fit (f), or stop (s)? [f]

> f

no. of ions for fitting is 3

ion N z b bturb temp

iteration : 0 (1)

chi-squared : 2.358 (339.5488, 144)

H I 13.36322 2.2290761 36.1757 0.00 0.00E+00 0 ! 1

H I 12.86882 2.2297496 28.9874 0.00 0.00E+00 0 ! 2

H I 12.13350 2.2302955 26.5827 0.00 0.00E+00 0 ! 3

iteration : 1 (1)

chi-squared : 1.067 (153.6667, 144)

H I 13.35395 2.2290686 35.9745 0.00 0.00E+00 0 ! 1

H I 12.82776 2.2297712 30.4385 0.00 0.00E+00 0 ! 2

H I 12.10340 2.2303048 28.7790 0.00 0.00E+00 0 ! 3

.......

17

iteration : 8 (1)

chi-squared : 0.971 (139.7969, 144)

H I 13.36824 2.2290807 37.1597 0.00 0.00E+00 0 ! 1

H I 12.68014 2.2297723 25.4604 0.00 0.00E+00 0 ! 2

H I 12.41261 2.2301257 41.7090 0.00 0.00E+00 0 ! 3

Parameter errors:

H I 0.00619 0.0000046 0.5395 0.00 0.00E+00 ! 1

H I 0.29051 0.0000221 4.5144 0.00 0.00E+00 ! 2

H I 0.56100 0.0004240 24.5479 0.00 0.00E+00 ! 3

statistics for whole fit:

Runs test K-S test Chi-squared Chans ndf APr Xp(.68) Xp(.95) Xp(.99)

0.00044 0.04271 139.80 153 144 0.583 151.57 172.72 185.69

Statistics for each region :

Start End Chi-squared Chans df?

3923.18 3928.81 139.80 153 144 0.583 < Prob < 0.770 g= 0.583 1

3923.18 maxdev 1.4340 0.033 0.956 1.358 1.627

Plot? y,n, or c=change device [y]

>

Line, system number: (<CR> or * for internal guesses)

>

plot parameter? (type he for options list)

>

Plot? y,n, or c=change device [y]

>

At this stage you should have a plot showing you what the fit looks like, as in Fig. 2.
The data is black, the fit green, and the positions of the fitted lines are shown in light
blue. The numbering gives the system number, as in the output above, on the top, and
the line ID number, in the ordering given in the atomic data file, on the row below. Lyα
is #1 in the list which was used here.

At this stage responding ’n’ to the ’Plot?’ question, then ’n’ to ’Fit more lines?’ closes
the program, and the displayed fit will disappear.

The results are written to several places, which are by default:

• fort.13 contains the first guesses so you can run the fit again from file, if you wish
to.

• fort.18 contains the full fit history, with the parameter values at all the iteration
steps as seen on the screen.

• fort.26 contains a summary of the final results of the fit. This is in a different
format than fort.13, but is read equally well by VPFIT if you wish to use it to
restart the program. For some of us it has become the default format.

18

Figure 2: A three component Lyα fit to a region of the sample spectrum,
obtained using the methods described in the text.

Both fort.13 & fort.26 are ASCII files which can be edited before restarting. Note that if
the program is re-run then fort.18 & fort.26 are over-written, and if re-run in interactive
mode then fort.13 is over-written as well. If this is a nuisance then you can use the setup
file (see section 7) to change where the summary output is written.

Why were three lines chosen for this example? Because two were tried and found not to
be enough. The fit statistics given in the screen (and fort.18) output are the things to
look at, and the main one is the χ2 value and the number of degrees of freedom (ndf).
A probability that the data matches the fit given these values is computed (APr), and
χ2 values for three probabilities is listed. For two systems, χ2 = 207.82 for ndf= 148,
which gives APr= 0.001.

There is a region-by region statistics breakdown, so you can see the bad regions, but
here the probabilities are given as possible ranges because the degrees of freedom per
region is not calculable. There is a runs test and K-S test probability given as well, but
these are more prone to suffer from smoothing effects in rebinned data so are usually
ignored.

6.2.2 Multiple regions

If there are several transitions for an ion available then the system parameters are better
constrained by using all of the available lines. You can do this by specifying multiple
wavelength regions. For example, in the sample data you might note that the close pairs
of lines at 3965 A and 3971.5 A look like a two component system seen in CIV 1548 &
1550. For these the process is similar to above. Mark off the boundaries of the lines at
3965 A, with now two CIV 1548 instead of three HI 1215. Having done this you should

19

then respond ’s’ to the ’Include other data’ prompt, and you’ll get something like

Include other data? y, n (def),

(or sf for more from the same file)

> s

Adding the previous lines to the display

1 C IV 12.807 1.560792 14.31

2 C IV 12.622 1.561157 8.38

Plot? [y]

>

plot parameter? (type he for options list)

>

The whole available spectrum is then plotted, and you need to navigate to the CIV 1550
lines which are now helpfully marked. Expand the region, and mark off the edges of
this new CIV 1550 wavelength zone in the same way as before (don’t include the line
near 3970 A - it is Galactic CaII). Do NOT put in CIV 1550 as lines though. VPFIT
knows they are there, and putting them in a second time will only cause confusion or
line rejection.

So you might for this region have the sequence

Region limits: 3970.541A (channel 2034) - 3972.366A (2089)

Channels 2034 2089

Vacuum wavelength for start of chunk is 3970.54363

Line 3 :ion, lamda0, N,b,z? <CR> to end

.. in the graphics window

Include other data? y, n (def),

(or sf for more from the same file)

>

no. of ions for fitting is 2

ion N z b bturb temp

iteration : 0 (1)

chi-squared : 1.886 (252.6578, 134)

C IV 12.77243 1.5607976 13.5745 0.00 0.00E+00 0 ! 1

C IV 12.62013 1.5611554 8.5531 0.00 0.00E+00 0 ! 2

.....

iteration : 3 (1)

chi-squared : 1.263 (169.2334, 134)

C IV 12.80507 1.5607889 14.4107 0.00 0.00E+00 0 ! 1

C IV 12.67798 1.5611530 8.7871 0.00 0.00E+00 0 ! 2

20

Parameter errors:

C IV 0.01211 0.0000029 0.5163 0.00 0.00E+00 ! 1

C IV 0.01309 0.0000020 0.3863 0.00 0.00E+00 ! 2

statistics for whole fit:

Runs test K-S test Chi-squared Chans ndf APr Xp(.68) Xp(.95) Xp(.99)

0.00000 0.01309 169.23 140 134 0.021 141.29 161.73 174.29

Statistics for each region :

Start End Chi-squared Chans df?

3963.27 3966.51 108.09 79 73 0.005 < Prob < 0.017 g= 0.005 1

3963.27 maxdev 1.0796 0.194 0.956 1.358 1.627

3970.18 3972.83 61.15 61 55 0.265 < Prob < 0.471 g= 0.265 2

3970.18 maxdev 1.2073 0.108 0.956 1.358 1.627

.....

You are now asked which region you want to plot, and can have a look at each in turn.

This can be extended to multiple regions, or multiple files. It is just a matter of how
much patience you have in setting things up.

One thing which is worth stressing again is that it is important NOT to enter each
transition of each ion individually. Once an ion is in the system, with a start redshift
normally determined from one line, then VPFIT will put in all lines of that ion which
fall in any of the wavelength regions specified.

It is not necessary to have the same ion list either. For example, if the second region
were extended to include the Galactic CaII 3970 line then the sequence for the second
region could be

right limit

Region limits: 3968.892A (channel 1985) - 3972.598A (2096)

Channels 1985 2096

Vacuum wavelength for start of chunk is 3968.92154

Line 3 :ion, lamda0, N,b,z? <CR> to end

.. in the graphics window

CaII 3970

Wavelength used: 3969.5901

set cursor x- wavelength, y- base of feature

.. and now half width at half (optical) depth

Estimated vac wavelength & z are 3969.69849 2.73041612E-05

11.8807063 12.9534595 2.73041612E-05

Line 4 :ion, lamda0, N,b,z? <CR> to end

.. in the graphics window

Include other data? y, n (def),

(or sf for more from the same file)

>

.......

iteration : 3 (1)

chi-squared : 1.250 (236.2565, 189)

21

Figure 3: A three component Lyα fit to a region of the sample spectrum,
obtained using the methods described in the text. Fits at redshift z =
1.561 to CIV 1548 (left) and CIV 1550, with low redshift to Galactic
CaII 3970 (right).

C IV 12.80493 1.5607889 14.3879 0.00 0.00E+00 0 ! 1

C IV 12.67798 1.5611531 8.7672 0.00 0.00E+00 0 ! 2

CaII 11.92909 0.0000286 12.5837 0.00 0.00E+00 0 ! 3

Parameter errors:

C IV 0.01204 0.0000029 0.5169 0.00 0.00E+00 ! 1

C IV 0.01296 0.0000020 0.3870 0.00 0.00E+00 ! 2

CaII 0.02196 0.0000019 0.8401 0.00 0.00E+00 ! 3

statistics for whole fit:

Runs test K-S test Chi-squared Chans ndf APr Xp(.68) Xp(.95) Xp(.99)

0.00000 0.05532 236.26 198 189 0.011 197.74 221.79 236.45

Statistics for each region :

Start End Chi-squared Chans df?

3963.13 3966.61 110.44 86 80 0.014 < Prob < 0.039 g= 0.014 1

3963.13 maxdev 1.1861 0.120 0.956 1.358 1.627

3968.59 3972.93 125.81 112 103 0.063 < Prob < 0.176 g= 0.063 2

3968.59 maxdev 0.8735 0.430 0.956 1.358 1.627

.....

The CaII could be better constrained by including CaII 3934, and under normal cir-
cumstances one would include that as well. However it is totally swamped by a strong
redshifted Lyα transition, so it is not worth including it.

A feature of this mode of operation is that you get best fitting parameters for exactly
those components you have put in. No more and usually no less (sometimes lines become
refined away to very low column densities, and they are then automatically removed).
You can add keywords to the initial response line to tell VPFIT to add lines and try
again if the best-fit χ2 is unsatisfactory, iterating until either the χ2 value is OK or it
increases again with the addition of more ions. How to do this is described in section
6.4.

22

6.3 Running from file

While the interactive mode is fine for learning what the program does, it is tedious having
to use it every time. If you have first guesses then it is almost invariably more convenient
to run directly from a file. The first guesses need not come from interactive runs of the
program, but could come from anywhere. Joe Liske’s program vpguess provides a more
convenient way of setting up an initial file. Another way is to use the accompanying
RDGEN program to set up VPFIT start files - see the RDGEN description for this.

The results are the same as for the interactive mode, but now without the hassle of having
to remark the region and enter guesses for something you tried before and somehow
things were not quite right. The final results output file(s)from the program , which
have default names fort.13 and/or fort.26 unless otherwise specified, can be used as
input for a subsequent fit, after editing if you wish. This can have the format as for
the output file written by the program, but a freer format is accepted. Each field in an
input line can have any number of spcaes between it and the next. Thus an acceptable
input file for a spectrum held in HE0515rc.fits is:

*

HE0515rc 1 3691.378 3693.014

HE0515rc.fits 1 3697.606 3699.173

*

CIV 12.63 1.3848243 6.5544

C IV 13.08 1.384894 6.67

Note that a blank line is a terminator for a dataset.

Each line between the ’*’ separators give the filename, spectrum number (normally 1
unless it is in a multispectrum format), and the fitting region start and end wavelengths.
Where several regions are involved in a simultaneous fit, the filename etc has to be
specified for each.

Following the ’*’ separator below the file and region information comes the initial values
for the fit parameters (first guesses). Here ther is one line per system, giving the ion,
log column density, redshift and Doppler parameter for each redshift component.

So, in the example here CIV 1548 & 1550 are fitted simultaneously, with two redshift
components. CIV 1548 falls in the first region3691.378 - 3693.014 A) and CIV 1550
in the second (3697.606 - 3699.17 A). Note that you don’t need to specify line wave-
lengths - the program looks to see if any lines from ions in the list at the given initial
redshifts fall in the specified wavelength regions and puts them in automatically. The
rest wavelengthsfor each ion come from the atomic data file, see section 14.

This enables you to write an input file by hand if you wish to, rather than the easier
method of using the program to generate it. Note that a space between element and
ionization is allowed, or may be omitted.

Two input file formats are supported. The one above, which dates from the original
version of the program, and another which follows the output summary file format (see
section 9.2) so these can be edited and used to restart the program if desired. It will
be interpreted correctly unless you have removed the %% markers before the filenames.
The version given below is completely equivalent to the one above:

23

%% HE0515rc.fits 1 3691.3777 3693.0135

%% HE0515rc.fits 1 3697.6064 3699.1730

C IV 1.3848243 0 6.5544 0.64 12.63 0.0 0 !

C IV 1.384894 0.000004 6.67 0 13.08 0.0 0 !

The ’%%’ lines now given the file and fitting region information, and others the ion,
redshift Doppler parameter and column density. Note that the order of variables giving
the ions has changed, and there are some spare numbers after the redshift, Doppler
parameter and column density. They are there for compatibility with the summary
output file, where they are the parameter error estimates. On input here they are
ignored, but some quantity must be there (a single 0 is fine). As above, it does not
matter whether or not there is a space between the ’C’ and the ’IV’, and free input
format is allowed.

To use either of these files just type ’F’ (from file) instead of ’I’ (interactive) as the
option on startup. So when following the preamble you see, with entries against the >
symbol:

options: <CR> for previous value

I - interactive setup and fit

F - run from an input file

D - display profiles from input file

? for help

option (key) (key)...

> f

Column density (n), logN (l) or emission (e), scalefactor [l, 1.0]

>

Parameter input file, # entries? [fort.13,1]

>

The ’f’ (or ’F’) in reponse to the first > prompt results in the program prompting for a
filename. The following prompt asks if you want to work in log or linear column density
space [logs are the default, i.e. the variables used if you just hit carriage return], and
the third > prompt asks for the input filename. If you have called it fort.13 then a
carriage return will do here as well.

6.4 Optional parameters

When starting VPFIT you are given a short list of options

options: <CR> for previous value

I - interactive setup and fit

F - run from an input file

D - display profiles from input file

? for help

option (key) (key)...

>

The response to this has a number of options in addition to the basic few listed. If you
type ’?’ you get a brief list, which looks like

24

D Display fit from file

E Display and compute errors from file

F File start, fit parameters

I Interactive start, fit parameters

G Provide initial guesses and fit

Key words checked are:

add (p) (p) - add new lines if needed to

get an acceptable fit, the values (p)

are threshold probabilities for CHI^2

and KS test respectively [0.01,1E-8]

OR, threshold normalized CHI^2 (if >1)

Ly-a all added lines are assumed to be Ly-a

unknown, or ??, all added lines ?? (1215.67)

zup (p1) add Ly-a if its redshift < p1, nearest otherwise

ecol (p1) (p2) - remove lines at end if

log col < (p1) AND log col err > (p2)

fixb (p) - added lines have fixed b [20]

diagnostics - write diagnostic o/p

inc filename - include earlier data

cum filename - cumulatively include earlier data

These options apply to all regions covered in a fit, and are given on a single line following
the basic option.

• add (p1 (p2)) When the program has converged to a best fit with the number of
ions it has, check to see if the fit is acceptable, and if it is not, add a new ion and
start again. This is done iteratively until either an accptable fit is attained or the
χ2 for the fit fails to decrease when lines are added. The acceptance criteria are if
the χ2 probability is greater than p1 and the K-S test probability is greater than
p2. If both of these are satisfied then the process of adding components stops.
The defaults are p1=0.01 and p2 = 10−8 (so the K-S test is normally ignored).

Where there are different ions in a complex the added ion is the same as the one
closest to the position of a line which the program determines should be added.
Occasionally also lines need to be divided into two, because the interim best fit
goes signifcantly below the data. I such cases both new components have the same
ions as the original divided line. An exception to this is where the nearest line
is a high order Lyman line, where HI at a redshift which assumes Lyα is added
instead.

The added ion can also be specified by giving the option Ly-a or ?? (or unknown).

• Ly-a All added systems assume that new lines placed in badly fitted parts of the
regions are Lyα, independent of the nearest system.

If you want to restrict the redshift range for which Lyα will be added, you can set
an upper limit of e.g z = 3.63 by including zu 3.63,

• ?? or unknown All added systems have the ?? line as their basis, as specified in
the atomic data file.

25

• ecol p1 p2 End of iteration check of column densities. If an ion has a log column
density < p1 and the error in the column density is > p2 then, when the program
has converged to a satisfactory χ2 (or given up because it failed to do so), these
ions will be removed, worst first, to see if a satisfactory fit can still be obtained.
It carries on doing this until the fit becomes unacceptable or there are no further
systems satisfying the trial rejection criteria.

• fixb p1 All added lines have a fixed Doppler parameter, value p1. You have to be
pretty desperate to want this, but it can be useful if there is a messy blend where
the Doppler widths are poorly constrained, provided that you have some reason
to believe that the value you have entered is correct, or does not matter.

• inc filename Add lines from the ions with parameters in a file to the spectrum to
modify the effective continuum. These are taken to have fixed redshifts, Doppler
parameters and column densities and are not refitted. The input format for this
file is as for the summary file (see section 9.2), and typically could be used to
include weak lines where the parameters are known from elsewhere in a region.
A better alternative is to fit all regions together, but if there are e.g. many high
order Lyman lines from many systems going into a region of interest this may be
unnecessarily time-consuming.

• cum filename This has the same action as the inc option (so don’t use both
together!) but for each fit the summary ouput is appended to filename, and used
for subsequent fits if there is a series.

So if you wanted to fit with starting guesses from a file, add components until the
χ2 probability exceeded 0.02, with added components being unknown, and attempt to
remove lines for the log column density was < 14.3 and error estimate > 0.3, modifying
the continuum with system paramters contained in a file called f26.old, then use

f ad 0.02 ?? ec 14.3 0.3 inc f26.old

6.5 Use for fine structure constant

The input file can have the form

*

J012417-374423 1 6272.250 6275.880 vsig=2.810

J012417-374423 1 6288.800 6290.060 vsig=2.810

J012417-374423 1 5344.700 5346.300 vsig=2.810

J012417-374423 1 5326.200 5327.610 vsig=2.810

J012417-374423 1 5258.180 5259.780 vsig=2.810

*

MgII 11.12085 1.2431860AX 6.0400BX -5.41E-06QA

MgII 12.46181 1.2432293aa 1.3145ba -5.41E-06QA

MgII 13.57020 1.2432912ab 6.0504bb -5.41E-06qa

MgII 13.31861 1.2433628ac 6.4206bc -5.41E-06QA

MgII 12.71755 1.2434859ad 4.8919bd -5.41E-06QA

MgII 12.20853 1.2435642ae 7.7863be -5.41E-06QA

26

MgII 11.58066 1.2437463 4.1546 -5.41E-06QA

MgII 11.67876 1.2440402 4.9295 -5.41E-06QA

FeII 12.50575 1.2432293AA 0.8672BA -5.41E-06QA

FeII 14.18841 1.2432912AB 3.9915BB -5.41E-06QA

FeII 13.27883 1.2433628AC 4.2357BC -5.41E-06QA

FeII 12.20504 1.2434859AD 3.2272BD -5.41E-06QA

FeII 11.55266 1.2435642AE 5.1367BE -5.41E-06QA

<> 0.99988 3.3971637SZ 0.0000SB 0.00E+00SE

where the extra column is an estimate for the change in the fine structure constant
∆α/α appropriate for the systems it covers.

Note that everything now has a fourth variable attached to it, so it is vital to mark it
as fixed if there is no fourth variable (Q or K) associated with it in the atomic data
table (see section 14.3). So, in the example above, the ‘SE’ fixes the value at zero for
the continuum adjustment <>.

To use the program in this mode the VPFSETUP file MUST contain

NOVARS 4

(see section 7), and the atomic data table (section 14) MUST contain the appropriate
q-coefficients for each transition (see section 14.3). For this to work at all, the ions used
must be flagged with at one or two character alphabetic identifier, and the first letter
MUST be ‘q’ or ‘Q’ (to tell the program to use the q-values from the atomic data file
for all transitions from this ion at this redshift). The scale of the variable ∆α/α as
printed can be changed as well - see section 14.3.

Different tags on the fourth parameter will cause different actions (at some stage). It
is hard to imagine anybody wanting more than 26 different fine structure constants, so
this should not be a significant restriction. As usual, the lower case one is the reference
one, and the upper case flags (of which there may be zero) are tied to that.

If instead you are interested in the electron/proton mass ratio using e.g. H2, use ‘m’ or
‘M’ instead of ‘q’ or ‘Q’ as tied tags. If you want to use this for something other than
H2 you’ll need to set up you own atomic/molecular data file.

It is anticipated that this mode will be used after a preliminary fit has been obtained
with ∆α/α = 0 (with NOVARS=3). I have absolutely no idea what might happen if
you attempt to start interactively in this mode, but doubt that it will be good.

You should be able to leave the fourth parameter column blank for an ion which has lines
which are not subject to fine structure constant or electron/proton mass ratio shifts, or
you don’t care about. The column should then become a fixed zero - as in the example
above.

6.6 Velocity precision from a portion of spectrum

Murphy, Webb & Flambaum (astro-ph/0611080 v3) have given a prescription for esti-
mating the velocity precision one can obtain by using all the pixels in a spectral region.
If NOVARS=4 (or more), and the prescription above is followed, then the σv defined by
their equation (4) is computed and written to both the full output file (usually fort.18)

27

and the summary output file (fort.26 or whatever you have changed that to in the
VPFSETUP file). The (fort.26, for five regions) results have the form

...

%% J012417-374423.fits 1 5258.1763 5259.7773 vsig=2.810

! chunk 1 sigma_v= 0.04504709

! chunk 2 sigma_v= 0.04621412

! chunk 3 sigma_v= 0.03821856

! chunk 4 sigma_v= 0.05051567

! chunk 5 sigma_v= 0.04580045

.....

where the sigma v values are in km s−1. It is then up to the user to associate q-
coefficients with each spectral region based on the transition appropriate for that region,
and calculate the uncertainty in ∆α/α using their equation (2). This could in principle
be done within the program here, but it isn’t (yet).

28

7 Setup parameter file

VPFIT setup parameters are read from a file which is pointed to by the environment
variable VPFSETUP, e.g by

setenv VPFSETUP /home/whoever/wherever/vp setup.dat,

where the possible contents of vp setup.dat are described below. It gives various optional
presets for the running of the program. An example file could be:

lastchtied v

! ---- parameter limits ----

bvalmax 50000.0 Maximum b value (can have two - metals, HI)

bvalmin 0.2 Minimum b-value (up to two) (should be << that expected)

! cvalmin 8.0 minimum column density (log)

! cvalmax 30.0 maximum column density (log)

bltdrop 0.101 drop system if b value less than this AND ..

clogltdrop 14.3 if log column density less than this.

bgtdrop 50001. Drop any system with b .gt. this (> bvalmax, so none).

fcollallzn 4.162e22 Fik*col for inclusion everywhere.

! zerolevels -0.3 0.3 limits to zero level adjustment (default - none)

! ---- miscellaneous things

! chisqthres 0.001 4.0 0.01 0 relative chi^2 decrement for stopping

! setspecchar S internally fixed parameter flag

! dots 100 Put dots on screen print.

! ---- add/remove line parameters ----

adsplit 2.5 Line splitting bias

maxadrem 75 Maximum number add/remove cycles before stopping

absigp 10.0 line search lower level for splitting

adcontf 2.2 10 5.0 12.5

! colglo 0 column density below which guesses are ignored

! guessline CIV 1548 Line guesses are given feature (default is Ly-a)

! ---- output control

date datestamp the ’26’ summary output

! wr13s f13.w end summary root filename (fort.13 format)

wr26s f26.w fort.26 summary root filename

! wr26prob include chunk probability estimates in summary output

! nopchan 0 output (0=not much, 1=iterations to 6, 2=6+fort.18)

! vform use variable format O/P depending on error estimate

! wrcitn current iteration to junk.dat, remove on clean exit

! ---- internal substepping ----

! nsubmin 1 minimum number of subpixels per pixel

! nsubmax 11 maximum number of subpixels per data pixel

! nfwhmp 7 require at least 7 pixels per instrument fwhm

! ---- development tools ----

! pcvals prompt for controls (il, stepsize etc)

! verbose nn information printout control

! DEBUG 0

Note that comment lines are ones which start with a ! (or #), so any parameter line
may be commented out, as are several in the example above.

The following sections descibe the effects of some of these.

7.1 Tied parameter letter

lastchtied v

29

If the first letter of the one or two letter tied parameter flag is after this in the alphabet
(so in this case w - z), then don’t tie the parameters in the standard way described
in Sections 11.1 and 11.2. Instead for Doppler parameters estimate temperatures (see
Section 11.3) and for column densities the first in a sequence is the sum of those which
follow (Section 11.4).

The default letter is z, so if this parameter is not set there is no possibility of special
handling of column densities or Doppler parameters.

7.2 Parameter limits

Limiting values for the fitted parameters may be specified through various keywords in
the setup file. The ones which are recognized are:

• Minimum Doppler parameter:

bvalmin nnn

where nnn is the minimum value of b =
√
2σ (in km s−1) allowed. If the best fit

solution for any ion has a lower value of b, it is automatically reset to b = nnn.

If two quantities are given, as

bvalmin n1 n2

then the first (n1) is taken as the minimum b for all lines apart from HI lines, and
n2 is the minimum for the HI lines only.

• Maximum Doppler parameter:

bvalmax nnn

where nnn is the maximum value of b =
√
2σ (in km s−1) allowed. If the best fit

solution for any ion has a higher value of b, it is automatically reset to b = nnn.

If two quantities are given, as

bvalmax n1 n2

then the first (n1) is taken as the maximum b for all lines apart from HI lines, and
n2 is the maximum for the HI lines only.

• Minimum column density

cvalmin n1

Here n1 is the minimum column density allowed. If the program tries a value less
than this then it is set to n1. If n1< 25 then the value is taken as the log of the
column density in cm−2.

30

• Maximum column density

cvalmax n1

Here n1 is the maximum column density allowed. If the program tries a value
greater than this then it is set to n1. If n1< 25 then the value is taken as the log
of the column density in cm−2.

• Criteria for dropping systems

bltdrop b1 drop system if b value less than this AND ..

clogltdrop c1 if log column density less than this.

Systems are dropped, and the search for the best fit continues without them,
if the Doppler parameter b <b1 AND the (log) column density is less than c1.
Both parameters should be specified, but in case you don’t the defaults are b1 =
0.050001 and c1 = 14.0.

Another parameter

bgtdrop b2

simply ensures that systems with ridiculouly large Doppler parameters are also
dropped. I doubt that this is often used.

• To include a line ion in all fitting regions use

fcollallzn n1

VPFIT uses the ion list to look for lines in the specified wavelength regions, and
includes them only if they fall within those regions. Lines for which the column
density × oscillator strength exceed this value are included in all wavelength re-
gions. It slows the program down a bit, but is occasionally useful if you want to
include the damping wings of a Lyα line which has a centroid which is otherwise
too far from the region of interest.

• Limits to zero level adjustment (see Section 14.2.4) can be set by

zerolevels n1 n2

The effect is to constrain the zero level adjustment to be between n1 & n2 × the
local continuum. This is normally not needed (and the default is no limits), but
sometimes you have might have knowledge of partial coverage and wish to set
limits. For normal data n1 should be negative - otherwise the zero level will be
constrained to be above zero!

31

7.3 Miscellaneous

7.3.1 Stopping criteria

At each iteration with a given number of systems a check is made on the change in the
relative χ2, and if ∆χ2/χ2 < 0.001 (default) the iterations terminate. However, if the
normalized χ2 > 4, the stopping criterion is less stringent. The iterations terminate if
∆χ2/χ2 < 0.01. So if the fit is not very good the program terminates earlier. This saves
a bit of time if lines are being added automatically.

These thresholds can be changed in the VPFSETUP setup file, using the line

chisqthres 1E-5 5.0 0.05

which changes the stopping ∆χ2/χ2 to 10−5 for a normalized χ2 < 5, and to 0.05 if for
normalized χ2 > 5.

You can add another parameter to this line in the VPFSETUP file. If you have

chisqthres 1E-5 5.0 0.05 16

then, independent of the thresholds, the iterations will stop only if there have been
more than 16 of them and the ∆χ2/χ2 criterion is satisfied. This can be useful if you
are testing the range of χ2 for various parameters and want the number of iterations to
be controlled.

7.3.2 Fixed flag

Occasionally added lines within VPFIT have some parameters fixed. For example, the
’redshift’ assigned to a continuum adjustment acts only as a marker to tell the program
which wavelength region the continuum adjustment (Section 14.2.3) is to be applied to,
so it has to be fixed (for a description of fixed parameters see Section 11.1). The line

setspecchar S

means that S is the letter associated with internally fixed parameters. You should avoid
using this letter associated with parameter values in input files unless you know what
you are doing.

7.3.3 Progress monitor

For those who have slow machines with long interactive iterations, and like to be reas-
sured that the program is actually doing something, you can arrange for a row of dots
to appear, one for every n1 parameters, by using

dots n1

Whenever n1 parameters have been dealt with, a dot disappears from the screen. It is
rarely used or wanted, but it is there... Default: no dots.

32

7.3.4 Internal variable scaling

Some variables are scaled internally so that their values are not orders of magnitude
different from the others. The scalefactors are unlikely to need changing, but you can if
you want to. This may be done through the setup parameters file.

• internal lognscale p1 Scale the logN values by multiplying them by a factor
p1 for use internally. Default: p1=1.0.

• internal facnscale p1 Scale the column density values N by a factor p1 for
use internally if fitting linear column densities. Default: p1= 10−14, so column
densities ∼ 1014 have values internally ∼ 1.

• internal thunit p1 Temperatures are internally measured in units of p1 K. De-
fault: p1= 1000.

7.4 Line parameters

7.4.1 Guess line

The guessline parameter gives the line to use for initial guesses if no lines at all are
specified for any wavelength region. This applies only for the mode where you are
starting from an input file specifying the region(s).You may use guessline ?? 1215 if
you want to, but since that is a ’special’ line in some sense, you then do have to specify
that any further lines to be added have to be ?? as well, if that is what you want, using

f ad ??

when starting the program (see Section 6.4).

7.5 Internal variables

There are a number of further internal variables, such as step sizes used for estimating
derivatives, which may be changed. If you do this, it is important that you know why
you are doing it and what the consequences might be - and this tends to mean you need
some familiarity with how the code works. Few people do, so these are not normally
prompted for, but will be if the line

pcvals

appears in the setup file. Then VPFIT asks for some setup parameters with

setup: ? print values, <CR> OK, n,z,b,x4,cs,sf,il,w,me,p,d,v to change

A ‘?’ prints the current default values, any of which may be changed by typing the
letter code followed by the new value(s). Note that if this prompting is turned on, the
damping of the matrix calculation is turned off. To reset it, type ‘il’.

33

8 Spectral resolution

The spectral resolution may be specified in several ways, and, if you are content to
use a Gaussian to describe the instrument profile, how it is done is a matter mostly of
convenience. However, it must be specified - there is no default. If you fail to give a
value one way or another, the program will prompt for a value for each fitting region
(see section 8.3). This can be a pain, and is meant to be. The options for specifying the
resolution are described below.

8.1 Resolution in FITS data header

The method which involves the least effort is to specify the resolution in the header
of the FITS data file, as a constant velocity FWHM (in km s−1) associated with the
keyword RESVEL. The instrument profile is then assumed to be a Gaussian with that
full-width-half-maximum. Since profile fitting is most useful where there is a hope of
resolving the lines, the main application is for echelle data where constant velocity
resolution is usually a reasonably good approximation.

Where there is more information on the instrument profile this can be put in a file and
the file name associated with the key RESFILE in the header to the FITS data file. The
file itself must reside in database/ relative to the FITS file location This is a hangover
from an old IRAF-based structure, but it has not caused any problems.

There are three options for the file contents:

• As a table of wavelengths and corresponding resolution values, for a Gaussian
instrument profile. Such a file must have a descriptor on the first line (‘R’ or ‘r’ for
a table of resolution as λ/∆λ where ∆λ is the instrument FWHM; or ‘t’ for a table
with FWHM velocities in km s−1). Such a table just has wavelength/resolution
pairs, one per line, and might look like:

Resolution

3000 45000

5760 45000

5820 42000

6700 42000

6900 45000

8600 45000

8650 40000

11000 40000

A blank line acts as a terminator, as does the end of the file. The values may be real
or integer, and (multiple) spaces or (single) commas may be used as separators,
as for almost all VPFIT input. Don’t use tabs though - they are not recognized.

In VPFIT the resolution value used for each data region is determined at the
central wavelength for that region, linearly interpolating between the two nearest
values, or adopting the nearest value if the wavelength is out of range. It is assumed
that the profile is a Gaussian.

34

• As a polynomial fit to the FWHM as a function of wavelength. In this case it is
also assumed that the instrument profile is a Gaussian, with

FWHM = a1 + a2λ+ a3λ
2...+ a6λ

6

where the FWHM is in A, and the coefficients a1, a2 are from the file, one per line.
There must be six of them, so pad out with zeros if necessary. The setup allows
for multispectrum files, and the spectrum referred to is specified by row number
in the FITS file. So for a standard single spectrum file, the resolution file in this
format has fit coefficient sets separated by lines containing ’row nn’. So such a file
might look like:

row 1

0.25

0

0

0

0

0

row 2

0.35

0

0

.....

This might be useful if you have constant wavelength resolution, or echelle spectra
where the echelle orders are kept separately within the file, but since otherwise the
polynomial fit has to be determined somehow the alternative format for the table
given above is almost invariably preferable. It is really a leftover from the earliest
versions of the program.

• A profile which is specified on a pixel-by-pixel (or sub-pixel) basis.

The resolution file need not contain just the fit coefficents for the Gaussian width
line-spread-function, but can be a pixel by pixel description with a weight for each
pixel specified. This is assumed if there is no RESFILE specified in the header
for the data and the file contains more than one line of values, and is not invoked
otherwise. This allows any instrument profile you want, particularly for those
cases where a Gaussian might not be appropriate – all you have to do is measure
it! It is assumed that the pixel profile given applies to the whole of the spectrum
with which it is associated. If there are different profiles for different parts of the
spectrum then you can either

– have mutiple copies of the spectrum, or parts of it, each with RESFILE
pointing to a different file, or

– run from file with different filenames specified on the line containing the file
and region information (see section 8.2).

A LSF which has as weights the ordinates of the normal curve with sigma=1 pixel
at each pixel relative to a central peak could be written to a file (in /database) as:

35

-4 0.0001

-3 0.0044

-2 0.0540

-1 0.2420

0 0.3989

1 0.2420

2 0.0540

3 0.0044

4 0.0001

<EOF>

where <EOF> is the end-of-file. This pixel by pixel smoothing is then applied to
the Voigt profiles on the continuum before comparison with the data. Note that the
file should contain an odd number of pixel values for the LSF. The normalization
does not matter, since the smoothed value at each point is divided by the summed
weights.

The VPFIT program needs to know that the instrument profile is specified in pix-
els, and this is done via the file pointed to by the environment variable VPFSETUP
(see section 7). This file must contain

nsubmin 1

nsubmax 1

If the instrument profile is not well sampled, then you should really choose finer
pixels for the data (not helpful, but true). It is possible specify an instrument
profile at a sub-pixel level, and have this applied to the data. Then it is a good idea
to have an odd number of sub-pixels per pixel, and the format of the instrument
profile file for nine sub-pixels per data pixel is

-9.444445 0.000000

-9.333333 0.000000

-9.222222 0.000186

-9.111112 0.000200

-9.000000 0.000200

-8.888889 0.000251

-8.777778 0.000300

-8.666667 0.000311

-8.555555 0.000366

-8.444445 0.000422

-8.333333 0.000477

-8.222222 0.000531

-8.111112 0.000623

-8.000000 0.000692

-7.888889 0.000746

-7.777778 0.000853

-7.666667 0.000963

.....

-0.555556 0.331896

-0.444444 0.391605

-0.333333 0.452252

-0.222222 0.505960

36

-0.111111 0.544142

0.000000 0.559950

0.111111 0.548307

0.222222 0.514081

0.333333 0.463878

0.444444 0.405957

0.555556 0.347922

.....

9.222222 0.000200

9.333333 0.000181

9.444445 0.000077

<EOF>

This example is for STIS on HST, and the values given are in pixels (or fractions
of a pixel) relative to the centre in the first column, and relative intensities in the
second. The normalization does not matter - the sum is divided out. Note that
the instrument profile need not be symmetric about the reference point, but if it is
not you should think carefully about what the reference wavelength really means!

If a pixel profile is used it is vitally important that the VPFIT program profile
generation sub-stepping be the same as the instrument profile. So, in the VPF-
SETUP file the minimum and maximum substepping allowed must be equal, and
set to the value appropriate for the instrument profile. So, for the STIS example
above, the VPFSETUP file must contain

nsubmin 9

nsubmax 9

If you have different data files with instrument profiles specified at different sub-
pixel levels, then (for now at least) you need to interpolate the coarser instrument
profile on to the the scale of the finer. The program will not do it for you.

8.2 Specifying resolution in startup files

It is possible to specify the values for the resolution by using the key ‘vsig = nn.nn’,
‘vfwhm = nn.nn’, ‘wfwhm = nn.nn’ or ‘wsig = nn.nn’ in an input startup file which
contains first guesses. If the resolution is set in this way, any resolution specified in the
FITS header is not used. Here vsig is the Gaussian σ in km s−1, assumed constant
over the region to which it applies, and wsig is σ in A, again assumed constant over the
region. The FWHM desciptors are similar, but with the FWHM input instead of the σ.

An example of an input file using this approach is:

%% HE0515m4414.fits 1 6012.49 6017.67 vsig=2.8

%% HE0515m4414.fits 1 6027.88 6033.26 vsig=2.7

MgII 1.150251 0.000003 5.24 1.13 10.962 0.075 0

MgII 1.150341 0.000005 1.91 1.20 10.887 0.176 0

MgII 1.150407 0.000002 4.96 1.43 11.494 0.083 0

MgII 1.150479 0.000003 2.84 1.55 11.197 0.152 0

MgII 1.150546 0.000001 3.44 0.21 12.164 0.014 0

MgII 1.150634 0.000004 4.57 0.40 12.275 0.093 0

37

MgII 1.150685 0.000001 3.20 0.53 12.478 0.184 0

MgII 1.150744 0.000019 4.78 3.31 12.557 1.412 0

This can be useful if you are not sure of the resolution and want to try a few cases.

A new pixel instrument profile can also be pointed to from the input startup file, using
pfin =< filename >. This can be set to point to a different file for each fitting region,
but the (sub-) pixellation of the instrument profile must be the same for all regions.
Changing the wavelength vs resolution file in this way is not possible though - instead
just specify vsig or whatever on a region by region basis as in the example above.

8.3 Resolution unspecified

Knowledge of the instrument resolution is necessary for matching the Voigt profiles to
the data, so it must be given. If you don’t specify it anywhere the program prompts for
a value, with the line:

FWHM (km/s & A) were 0.0 0.000 <CR> to accept, or enter values

The first number is FWHM in km/s, so if you have constant velocity resolution (e.g.
from a high order echelle spectrograph) then just enter the value e.g.

6.7

If it is a constant delta wavelength, then use e.g.

0.0 0.12

If you enter two values on this line, then the FWHM at any wavelength is the sum of
the two.

38

9 Output

9.1 Screen output

A running commentary giving the numerical results for each iteration is normally written
to the screen. The initial information depends on the mode of use (basically ’from file’
or ’interactive’), then during the fitting process you can monitor the normalized χ2 value
at each iteration to see how it is approaching (or not) unity, and the fit parameters for
each ion in each system chosen are also shown. The iteration output looks like

iteration : 4 (1)

chi-squared : 1.031 (119.5556, 116)

C IV 12.08718 3.2558106 9.6634 0.00 0.00E+00 0 ! 1

C IV 12.63509 3.2560551 8.3725 0.00 0.00E+00 0 ! 2

C IV 12.67623 3.2563261 43.2974 0.00 0.00E+00 0 ! 3

....

This example shows iteration 4 of set 1, where the set number will change only in the
automatic add or remove ions mode. The normalized χ2 is given, along with the actual
χ2 and number of degrees of freedom. Then for each ion in each system, log column
density, redshift and Doppler parameter. The next two numbers are turbulent velocity
and temperature if those two quantities are computed (see 11.3), and the ’0’ is a rarely
used region pointer (see 9.2 below). The final numbers simply give a line count, and ID
number for use with the plot of the final fit.

This output is also written to a file, fort.18. I can be suppressed by including the line

nopchan 0

in the VPFSETUP file. Replacing the ’0’ by ’1’ gives output to the screen only, and ’2’
is for screen plus file.

When the χ2 step per iteration is small enough the process stops, with something like

iteration : 9 (1)

chi-squared : 0.848 (98.3189, 116)

C IV 12.01560 3.2557412 6.5453 0.00 0.00E+00 0 ! 1

C IV 12.83274 3.2560529 11.3139 0.00 0.00E+00 0 ! 2

C IV 12.31592 3.2565894 16.7572 0.00 0.00E+00 0 ! 3

Rescaled parameter errors:

C IV 0.12455 0.0000225 2.5080 0.00 0.00E+00 ! 1

C IV 0.02565 0.0000067 0.9479 0.00 0.00E+00 ! 2

C IV 0.06177 0.0000276 3.1832 0.00 0.00E+00 ! 3

statistics for whole fit:

Runs test K-S test Chi-squared Chans ndf APr Xp(.68) Xp(.95) Xp(.99)

0.16177 0.93632 98.32 125 116 0.881 122.75 141.85 153.63

39

Statistics for each region :

Start End Chi-squared Chans df?

6587.13 6591.58 48.87 62 53 0.635 < Prob < 0.887 g= 0.635 1

6587.13 maxdev 0.7198 0.678 0.956 1.358 1.627

6598.24 6602.75 49.45 63 54 0.650 < Prob < 0.894 g= 0.650 2

6598.24 maxdev 0.5291 0.942 0.956 1.358 1.627

....

The estimated parameter errors follow the best fit parameters for the final iteration.
The term Rescaled parameter errors reflects the fact that the diagonal terms in the
Hessian matrix have been rescaled by multiplying by the normalized χ2 value, so the
error estimates are still reasonably good even if the data error array is incorrect by some
factor, as is roughly the case for rebinned data where the only error array available is
based on photon statistics. If the data has come from the UVES popler package this
rescaling is not done (and the word ’Rescaled’ no longer appears). There is a similar
indication as to whether or not the errors have been rescaled in the summary file (see
section 9.2) if the change is significant.

Note that the error estimates given are only from the diagonal terms in the Hessian ma-
trix, so if the variables used are not independent then they could well be underestimates.
If you are doing something where the true errors are important then you should try to
find out what they really are by e.g. Monte-Carlo trials with simulated data, though
setting those up realistically may not be easy.

The fit statistics given in the screen (and fort.18) output are the things to look at to
see if a fit is acceptable, and the main one is the χ2 value and the number of degrees
of freedom (ndf). A probability that the data matches the fit given these values is
computed (APr), and χ2 values for three probabilities is listed. You can choose whatever
acceptance criterion you like - APr> 0.01 is a reasonable value.

There is a region-by region statistics breakdown, so you can see the bad regions, but
here the probabilities are given as possible ranges because the degrees of freedom per
region is not calculable. There is a runs test and K-S test probability given as well, but
these are more prone to suffer from smoothing effects in rebinned data so are usually
ignored. The nature of the runs test in particular is lost in the mists of time, so I’m not
even sure what it means any more.

9.2 Summary output

At the end of the fitting a summary is printed out. Precisely what you get may be
determined by parameters in the VPFSETUP file (see section 7). The default is to
write to (and over-write) a file called fort.26, but if you want a named file for each fit
set then in the VPFSETUP file include the line

wr26s f26.w

or something similar. The final results are then written to a file f26.wnnnn, where nnnn
is the nearest integer central wavelength for the first of the regions of those included

40

in the fit. The first lines of the output file start with ’%%’ and give the data file and
fitted region limits. These are followed by a comment line with overall fit statistics
- iterations, normalized χ2, number of pixels, number of degrees of freedom, chance
probability that the fit is OK, and number of systems dropped in finding solution. Then
come the parameters for each fitted ion, with each line giving ion, redshift, ±, Doppler
parameter in km s−1, ±, log column density in cm−2, ±. The final number on that line
is almost invariably zero [it is a region pointer where an ion is to be included in a single
region only, a somewhat unphysical situation which has been used for testing purposes].

%% HE0515rc.fits 1 5562.1941 5566.0996

%% HE0515rc.fits 1 5590.8700 5595.3470

! Stats: 4 1.1842712 605 428 0.005 0

FeII 1.150407 0.000004 3.83 1.18 11.315 0.086 0 !

FeII 1.150484 0.000016 2.90 3.71 11.037 0.368 0 !

.....

This is OK normally, but occasionally the errors turn out to be zero at this precision,
so more significant figures should be printed. You can set the program by including the
line

vform

in the VPFSETUP file, and then the number of decimal places is increased (for the
redshift to 8 or 10) depending on the redshift error. If you want to have the maximum
number of significant figures every time, then vform long in the setup file will do it.
The summary file then looks like

%% HE0515rc.fits 1 5562.1941 5566.0996

%% HE0515rc.fits 1 5590.8700 5595.3470

! Stats: 4 1.1842712 605 428 0.005 0

FeII 1.1504065320 0.0000038797 3.82912 1.17982 11.315082 0.086321 0 !

FeII 1.1504837563 0.0000156551 2.89745 3.70543 11.036918 0.367643 0 !

.....

Whatever the precision, this summary file can be used, either as it stands or with values
changed, or lines added, to restart VPFIT in the ’Read from file’ mode.

9.3 Looking at the fit results

After the fitting process is finished you are given the opportunity to look at the results
in a PGPLOT graphics window if you want to. This is done region by region, using the
same command line plotting routine as the RDGEN program. If you have more than
one region involved in the fit, you are prompted for which one you want.

Plot? y,n, or c=change device [y]

>

Identify which dataset:

ID Filename data cont lamcoeffs nchans KS prob

1 1 filename1.fits 1 1 5454.23 0.0455 126911 0.533

2 2 filename1.fits 1 1 5468.44 0.0456 126911 0.968

41

Which # ? [1]

>

plot parameter? (type he for options list)

>

PGPLOT device? [/xwindow]

>

Plot? y,n, or c=change device [y]

>

The > prompt is, in this example, followed by a carriage return, since usually the defaults
are sensible. It is not normally worth using the full range of plot parameters, since the
program displays the fit region you have chosen, but they are all there in case you want
to examine something more closely. Type ? for help if you want it. Fuller details are
given in the RDGEN description.

The plots from VPFIT mark the line positions with two numbers - the top is just the
system number in the output list order, and the lower one identifies the line, by number
for the given ion, in the atomic data list. So, for example, CIV 1548 would be labelled
1, 1550 labelled 2, SiII 1808 2, SiII 1526 3 etc.

If you want an ASCII file of the plotted quantities, then

as

at the ’plot parameter’ prompt will result in the program writing the results to fort.17
instead of the PGPLOT window or device, without closing the plot device. To restore
plotting to that device simply enter as again when you want that to happen. The fort.17
format is

wavelength data error fitted profile

for the region plotted (possibly with silly numbers for the fitted profile outside the fit
range), followed by a list of tick mark positions with the line ID numbers as described
above.

42

10 Subpixel profiles

Lines with FWHM ∼ a few pixels or less were dealt with incorrectly by versions of
VPFIT earlier than VPFIT9. There is still a potential problem with very narrow lines,
but the constraint is now the patience of the person running the program rather than
something intrinsic to the method used.

The program resamples pixels according to the smallest b-value, so that there are a
minimum number of pixels per FWHM (= 1.68×b). The values for internal substepping
can be set in the setup file associated with the environment variable VPFSETUP. The
defaults are:

! — internal substepping —
nsubmin 1 minimum number of subpixels per pixel
nsubmax 11 maximum number of subpixels per data pixel
nfwhmp 7 require at least 7 pixels per line fwhm

The subpixel profile is built up for all lines, convolved with the instrument profile, and
then the result is converted back to the original pixellation for comparison with the
data. If you want to speed things up, with a possible loss of accuracy, set nsubmax to
a lower value (≥ nsubmin), or choose a lower value for nfwhmp, or both.

If you are using a pixel-based instrument profile, then set nsubmin = nsubmax = profile
sampling per pixel. If you are worried about intrinsically narrow lines, then you can
interpolate the instrument profile on to a finer sampling per pixel.

43

11 Fixed & tied parameters

It is possible to fix any parameter at some specific value, and to tie parameters so that
the have the same value, or specific relationships with each other.

11.1 Fixed parameters

On occasion it is useful to fix the redshift or the Doppler parameter because you know
them accurately from fits to other lines.. e.g. z and b from SiII, and you wish to apply
these to OI or CII. Fixed parameters are indicated by UPPER CASE letters after the
parameters in question. For the input (fort.13) file the parameter lines could look like:

O I 14.043 4.382795E 4.25K

O I 14.043 4.382893J 4.25N

O I 13.031 4.383101S 5.75

O I 12.346 4.383487 13.04

.. in which case the redshifts and the Doppler parameters are fixed, but the column
densities are free to vary for the first two, the redshift is fixed and the Doppler parameter
and column density vary for the third, and everything varies in the fit for the fourth.

11.2 Tied parameters

Another thing you might want to do is to tie parameters – for example demand that
CII and SiII always have the same redshift. This is done by the same letter approach,
but now one thinks of a reference ion (with lower case letters) and others tied to it (by
the corresponding upper case ones), so the ion detail lines in fort.13 become like:

C II 14.043 4.382893j 4.25 0.00 1.00E+00 0

C II 15.568 4.383865c 11.32 0.00 1.00E+00 0

SiII 14.043 4.382893J 4.25 0.00 1.00E+00 0

SiII 13.276 4.383865C 11.32 0.00 1.00E+00 0

Here SiII and CII are at the same redshift, though this common redshift is allowed to
vary. The other parameters vary independently.

If you want CII and SiII to also have the same Doppler parameters (or Doppler pa-
rameters in the ratio set by the square root of their mass ratios to mimic thermal
broadening), this is done by the same letter approach applied to the b-values, e.g. for
the above example:

C II 14.043 4.382893j 4.25k 0.00 0.00E+00 0

C II 15.568 4.383865c 11.32n 0.00 0.00E+00 0

SiII 14.043 4.382893J 4.25K 0.00 0.00E+00 0

SiII 13.276 4.383865C 11.32N 0.00 0.00E+00 0

44

.. here the redshifts and the Doppler parameters are tied. More information is needed
to tie them sensibly, and this is provided by the extra numbers after the Doppler param-
eters, here 0.00 and 0.00E+00. These are the assumed turbulent Doppler parameters
and temperatures if non-zero, and where both are zero (as here) it is assumed that the
Doppler parameters are thermally linked. So in this example b(CII) =

√

28/12b(SiII) -
the program will put in the correct relative values, using the lower case flagged ones as
starting guesses.

If you want CII and SiII to have the same Doppler parameter, then use e.g.

C II 14.043 4.382893j 4.25k 0.00 1.00E+00 0

C II 15.568 4.383865c 11.32n 0.00 1.00E+00 0

SiII 14.043 4.382893J 4.25K 0.00 1.00E+00 0

SiII 13.276 4.383865C 11.32N 0.00 1.00E+00 0

The mysterious 1.00E+00 is the ASSUMED temperature, which is fixed at 1K in this
case so that the Doppler parameters are effectively the same, i.e. all the b is turbulent.
1K is probably a silly temperature in reality - in fact it is a good idea to make sure things
which are turbulently linked don’t have temperatures lower than those you would expect
for the ions covered (e.g. ∼ 5000 - 104K or so for warm neutral medium gas containing
e.g. CII, SiII etc), and for any thermally linked the temperature is within a sensible

range. For a temperature T the thermal Doppler parameter is b = 12.85
√

T
104m

km s−1,
where m is the atomic mass in a.m.u.

You can also tie Doppler parameters at different redshifts if you want to, but it is not
at all clear what that would mean.

The output gives the best fit Doppler parameters given the constraints. It does not give
a temperature estimate directly, but this can be inferred from the Doppler parameters.

There are some things to be aware of:

• Do not use the same lower case letter more than once, since then the program does
not know what you are trying to link a variable to. This does not mean you are
restricted to 26 linked parameters however - the ”j” in the example above could
be replaced by a two-letter combination (e.g. ”ja”), and in such a case ”J” should
be changed to ”JA”. This means there are 676 independent tied or fixed systems
possible, which should be plenty!

• Note that you can’t fix both the turbulent and thermal Doppler parameters at the
same time, because this fixes the total b-value (which you can do, as above). If the
turbulent value input is non-zero, then the temperature value is ignored, whatever
it is, and the program treats it as an input value zero. Note that the letter should
be earlier in the alphabet than the ‘lastchtied’ one in the setup file, since if not it
is liable to try fitting a turbulent and thermal component simultaneously using a
different prescription.

• The example above is fine for getting fully turbulent linked Doppler parameters,
but it breaks down if you want to fix the temperature to be some more realistic
value. If you want the temperature to be 5000K, for example, then you must use
the other input format. So the block above becomes, for that temperature,

45

C II 4.382893j 0 4.25k 0 14.043 0 0 [0.00 0 5.00E+03 0

C II 4.383865c 0 11.32n 0 15.568 0 0 [0.00 0 5.00E+03 0

SiII 4.382893J 0 4.25K 0 14.043 0

SiII 4.383865C 0 11.32N 0 13.276 0

If you don’t do this the values are loaded into the wrong variables, so e.g. the
column density becomes the first guess at the redshift. You will notice this when
the program starts to go silly, if not before!

• In this case the column densities are free parameters, but you can fix and tie
these as well if you want to. Fixing is obvious, but tied column densities is not
something which has been wanted often. There is one possibility which is catered
for - demanding that ion ratios within a complex velocity system are the same for
selected components of that complex. This is described in subsection 11.5

... and a warning.

Constraining Doppler parameters to be thermal or turbulently linked, or a mixture, is
making an assumption about the region velocity structure. It is somewhat dangerous to
assume a Doppler parameter for some species based on others and then infer a column
density for it, unless the lines involved are on the linear part of the curve of growth
when the Doppler parameter is not relevant. For narrow, saturated lines in particular
you should be especially careful, since an thermal linkage e.g. between CII and SiII
(based on SiII Doppler parameter from several lines, saturated and unsaturated) could
give CII column densities about an order of magnitude lower than a turbulent linkage.

11.3 Temperature estimation

Temperatures and turbulent components may be estimated directly using tied ions of
different mass. If the first indicator letter is later in the alphabet than ’lastchtied’ in
the setup file, then the Doppler parameters b are determined assuming that

b2 = b2turb +
2kT

m

where m is the mass of the ion and T is the temperature. Since this requires two
parameters there are now two reference ions where the Doppler parameter is labelled
with lower case letters, and these two ions must have different atomic masses. The rest
in the sequence have Doppler parameters marked with the corresponding upper case
letters.

An example startup file for doing this (in summary format) is

%% HE0515m4414 1 6130.8716 6131.7505

.....

%% HE0515m4414 1 5037.6309 5038.2656

FeII 1.149084aa 0.000000 2.08wa 0.00 12.57 0.03 0

AlII 1.149084AA 0.000000 2.55WA 0.00 11.94 0.04 0

MgI 1.149084AA 0.000000 2.63WA 0.00 10.64 0.09 0

46

MgII 1.149084AA 0.000000 2.63wa 0.00 12.50 0.10 0

FeII 1.149115ab 0.000000 4.84wb 0.00 12.43 0.04 0

MgII 1.149115AB 0.000000 5.90wb 0.00 13.09 0.03 0

MgI 1.149115AB 0.000000 5.90WB 0.00 11.07 0.04 0

AlII 1.149115AB 0.000000 5.73WB 0.00 11.91 0.04 0

The output summary from this then gives the fit parameter estimates in the form
[ion z ± b ± logN ± bturb ± T ±]
FeII 1.149084aa 0.000001 2.08wa 0.00 12.571 0.029 0 [1.534 0.301 6.697E+03 2.949E+03
AlII 1.149084AA 0.000000 2.55WA 0.00 11.942 0.037 0 !
MgI 1.149084AA 0.000000 2.63WA 0.00 10.641 0.090 0 !
MgII 1.149084AA 0.000000 2.63wa 0.00 12.504 0.099 0 [1.534 0.301 6.697E+03 2.949E+03
FeII 1.149115ab 0.000003 4.84wb 0.00 12.430 0.040 0 [3.827 0.561 2.956E+04 6.664E+03
MgII 1.149115AB 0.000000 5.90wb 0.00 13.092 0.034 0 [3.827 0.561 2.956E+04 6.664E+03
MgI 1.149115AB 0.000000 5.90WB 0.00 11.071 0.037 0 !
AlII 1.149115AB 0.000000 5.73WB 0.00 11.909 0.040 0 !

Note that the error estimates for the individual ion Doppler parameters are set to zero.
Zero in this context does not mean they are zero, it simply means they are not computed
because they are now derived variables. The error estimates are now associated with
the turbulent Doppler parameter and the temperature, in the columns beyond the ‘[’.

The temperature and the turbulent Doppler parameter are both constrained to be pos-
itive, but otherwise nothing further is assumed. If there are not two ions for which the
Doppler parameter is not well constrained the error estimates may be very large, but at
least the results will be physically consistent.

11.4 Summed column densities

If you are dealing with a multicomponent complex then the column densities of the
individual components may have large error estimates because of their proximity to
other velocity components. The total column density may be much better constrained
however, and for abundance studies you may be interested in the overall relative column
densities. The column density sum, and its error, can be computed directly within the
program.

The vp setup.dat file (section 7) should contain LASTCHTIED v – or whatever letter
you choose. Later letters in the alphabet are then treated in a special way for tieing
column densities so that the first one in the block gives the TOTAL column density
for the complex. The redshift and Doppler parameter still apply to that individual
component, which now has a column density equal to the list value minus the sum of all
the rest with the same identifying letter. Thus order in the fort.13 file is important!

For example, if you want to know the total column density on the assumption that an
HI system is made up of b = 13 clouds, then you would put in fort.13 something like:

H I 13.905 3.320368 9.65

H I 16.76x 3.320970 13.00F

H I 15.91x 3.321462 13.00G

The 16.76 is then the sum of the column densities in the two ’x’ systems. This may
seem pointless, but in fact is useful for close blends in which the error estimates for the
individual components are large because of difficulties in resolving the blend, while the
total column density is much better constrained. In the output file the error against the
first column density is now the error in this total.

47

As with other tied parameters, two letters may be used, so ’xa’ is treated separately from
e.g. ’xb’. Then only the first of the two letters is checked to see if sums are required,
so for e.g. ’ax’ the column density sums are NOT used. For comparing total column
densities in a double system with common redshifts (and turbulent broadening of the
lines) one might start with:

C IV 14.63xa 2.765821aa 12.69ia 0.00 1.00E+00 0

C IV 13.89xa 2.765965ab 17.73jb 0.00 1.00E+00 0

SiIV 13.96xb 2.765821AA 12.69IA 0.00 1.00E+00 0

SiIV 13.10xb 2.765965AB 17.73JB 0.00 1.00E+00 0

The ordering for both the xa and xb sets is important. Note that the flags against the
column densities are all lower case. There is no notion of a main component which others
are tied to (as here for the redshifts and Doppler parameters), since all the parameters
are still free. It is only that the first in the list is computed in a different way.

You can extend this to as many CIV as you like up to the limit of the total number of
parameters, but they must appear as a single block in the file of starting guesses. Same
is true for the SiIV in this example. And other lines which may be blended can also
appear in the list, but not within any block, so

C IV 14.63xa 2.765821aa 12.69ia 0.00 1.00E+00 0

C IV 13.89xa 2.765965ab 17.73jb 0.00 1.00E+00 0

H I 13.02 3.345500 25.33

SiIV 13.96xb 2.765821AA 12.69IA 0.00 1.00E+00 0

SiIV 13.10xb 2.765965AB 17.73JB 0.00 1.00E+00 0

is acceptable, but

C IV 14.63xa 2.765821aa 12.69ia 0.00 1.00E+00 0

C IV 13.89xa 2.765965ab 17.73jb 0.00 1.00E+00 0

SiIV 13.96xb 2.765821AA 12.69IA 0.00 1.00E+00 0

H I 13.02 3.345500 25.33

SiIV 13.10xb 2.765965AB 17.73JB 0.00 1.00E+00 0

is not.

The final thing to note is that if the first column density in a list tied in this way is
smaller than the sum of the later ones in the list, then the value is taken as the column
density for that component, and for the output the quantity printed is replaced by the
sum. So, if one had

C IV 12.50xa 2.765821 12.69 0.00 1.00E+00 0

C IV 12.60xa 2.765965 17.73 0.00 1.00E+00 0

C IV 12.60xa 2.766165 10.73 0.00 1.00E+00 0

it would be converted to

C IV 13.05xa 2.765821 12.69 0.00 1.00E+00 0

C IV 12.60xa 2.765965 17.73 0.00 1.00E+00 0

C IV 12.60xa 2.766165 10.73 0.00 1.00E+00 0

48

and then a best fit solution sought.

If the first column density in the list is larger than the sum of the rest, then that column
density is not modified.

11.5 Common pattern relative ion abundances

Now to tie different ions so that the relative numbers for each ion remains the same
across the complex, but the total column densities may vary. Given the range of possible
ionizations and dust depletions this might not be very physically reasonable unless you
choose the ions carefully, but it might be worth a try sometimes. You can do this by
having fort.13 containing e.g.:

...

C IV 12.10 2.765701 14.81

C IV 14.63x 2.765821a 12.69i

C IV 13.89x 2.765965b 17.73j

C IV 12.89x 2.765995c 8.31k

SiIV 13.96% 2.765821A 12.69I

SiIV 13.10X 2.765965B 17.73J

SiIV 12.10X 2.765995C 8.31K

MgII 12.35 0.876844 5.37

...

The CIV grouping is as above, and the SiIV group must have the same number of ions
appearing in the same order, immediately after the group it is tied to (the CIV one in
this case). The ’%’ is just a marker, to say this is a new group for which the column
density for this line will be the total, and all the following ones with a captial letter
corresponding to the lower case ones above are to be tied, so that the SiIV/CIV ratio
for each component is constrained to have the same value. The total column density
ratio SiIV/CIV is allowed to vary, and a best-fit value sought.

If you have any spare ions in either system, as for the first CIV here, do not place them
between the two tied blocks. That CIV won’t be regarded as part of the total, but if
you want totals you can either include anothe tied SiIV and include both in the tied
blocks, or add them later by hand.

This will result in the first lines for each ion containing TOTAL column densities for
that ion in the complex, and, in this example, the SiIV and CIV are constrained to have
the same ratio in each velocity component. Note that for your first guesses you don’t
have to get the ratios right – the program sorts it out by making all ratios match the
first before starting to iterate.

Note forcing the ratios to be the same will affect the error estimates .. things are no
longer independent. The errors flagged with ’%’ are those in the total column density
given the ratios between components as error-free (I think).

As in the previous section, the column densities for the first lines for each different ion
are adjusted if they are less than the sum of those further down the list.

Again the order is vitally important, and here the ’%’ block must immediately follow
the base block i.e. in this example, the SiIV block immediately follows the CIV block,

49

with the same redshift order. You cannot put other ions between the blocks, or within
the blocks, since the association is done by positions within the blocks. If there are
other blended lines, they can be listed either before or after the tied blocks.

Also, the number of components for both ions must match. In this example, if there are
2 CIVs, there must be 2 SiIVs. If there were 5 CIVs, then you would need 5 SiIVs. Use
the stronger ones as the base ones and you should be able to avoid problems with weak
lines being thrown out by the program.

You can extend this to several groups, so e.g.

C IV 14.63x 2.765821a 12.69i 0.00 1.00E+00

C IV 13.89x 2.765965b 17.73j 0.00 1.00E+00

SiIV 13.96% 2.765821A 12.69I 0.00 1.00E+00

SiIV 13.10X 2.765965B 17.73J 0.00 1.00E+00

H I 15.67% 2.765821A 12.69I 0.00 1.00E+00

H I 14.34X 2.765965B 17.73J 0.00 1.00E+00

would result in CIV, SiIV and HI all following the same relative column density pattern,
with the first for each ion being the sum as before.

12 Higher accuracy Voigt profile

A higher accuracy Voigt profile routine has been developed by Julian King at UNSW.
It has the huge advantage over other methods that it is not significantly slower than
the relatively inaccurate interpolation routine which it replaces, but the Voigt function
error is now ∼< 10−5 (J. A. King, Honours thesis, UNSW, 2006).

Julian King has also implemented the Levenberg-Marquardt method to iterate towards
a solution (see e.g. Burles & Tytler, ApJ, 499, 699, 1998 for an application of this
method to an absorption spectrum, and Press et al. 1992, Numerical Recipes, Cambridge
University Press for a description). This is an improvement over the Gauss-Newton
method which has been used previously, in that VPFIT is less likely to wander around
aimlessly in parameter space in difficult cases, and take fewer iterations to find a solution.
However, when this method is used there are more function evaluations so there is a time
penalty. The Julian King implementation avoids most of this by using the Gauss-Newton
method when appropriate, and switching to Levenberg-Marquardt when needed. If you
set the verbose level to 9 or above (see Section 7 for setup parameters such as this),
VPFIT tells you when it is using the different methods, and gives parameters associated
with them.

13 Reliability of parameter and error estimates

Generally the parameter and error estimates are reliable, given the model. A range of
tests were done many years ago using simulated data to verify this, with the conclusion
that the parameter estimates are unbiased and the estimated errors are representative of
those for the parameter taken in isolation. The only exception was the Doppler param-
eter for damped profiles, which was not surprising since the temperature-independent

50

Lorentzian wings dominate the profile, so the minimum of χ2 with respect to the Doppler
parameter is very wide and flat.

However, in particularly difficult cases the parameter error estimates, and maybe to a
lesser extent the final parameters themselves, seem to depend on whether or not you are
using optimized code compiled with the -ffast-math flag. The example below is extracted
from a fit which involved 37 different systems (because of blends etc.) where the line is
considerably narrower than the instrument profile of 6 or 7 km s−1 (depending on the
spectrograph used - the fit was done using spectra from both HIRES and UVES). It is
not at all clear what should be done about this, but as a warning here are some results
from the same machine (a Dell Latitude D610) and the same startup file with the flags
in the makefile for VPFIT set as indicated:

FFLAGS= -ffast-math -Wall

C I 1.7765227918ab 0.0000012937 0.51015bb 0.08041 13.119485 0.128159

C I* 1.7765227918AB 0.0000000000 0.51015BB 0.00000 12.051059 0.071778

FFLAGS= -O5 -Wall

C I 1.7765237554ab 0.0000043223 0.52552bb 0.41552 13.162430 0.228997

C I* 1.7765237554AB 0.0000000000 0.52552BB 0.00000 12.046898 0.085709

-O3 on the Dell, and the compiler on a Sun give the same results as the -O5 case. These
are unlikely to be independent tests however!

80 simulations were run using the first version, and, at least for that version, the error
estimates seem to be reasonably reliable. A smaller set of 14 simulations using -O5 on
the Dell machine gives a mean Doppler parameter b̄ = 0.515 and a RMS of 0.078, so the
error estimates from the fast-math set seem to be more reliable. The mean error from
the -O5 simulations was 0.13, so where the 0.42 estimate came from in the fit to the real
data is anybody’s guess.

Another thing which was tried was to obtain error estimates for the same parameter
estimates for the two optimizer options. They are different as well: 0.083 for -ffast-math,
and 0.127 for -O5.

What should we conclude from this? Apart from reinforcing the general lesson of not
trusting anybody’s computer code, including (and probably especially) one’s own? Prob-
ably that much more testing is needed, but at least the error estimates provided by
VPFIT range from being reasonable to fairly high overestimates for the case considered
here.

51

14 Atomic data

14.1 File format

The atomic data file is usually called atom.dat, but can be anything. It is the file
pointed to by the environment variable ATOMDIR. The format accepted by VPFIT
is as shown between the horizontal lines.

Ion λ (A) fik Γ mass (amu) comments

?? 1215.6701 0.416400 6.265E8 1.00 No ID
>> 1215.6701 0.416400 6.265E8 1.00
<> 1215.6701 0.416400 6.265E8 1.00

1215.6701 0.416400 6.265E8 1.00
H I 1215.6701 0.416400 6.265E8 1.00794 Morton(03)
H I 1025.7223 0.079120 1.897E8
H I 972.5368 0.029000 8.127E7
....
PbII 1433.905 0.870 1e8 206 Kurucz ab=4
end 0000.000 0.000000 0.00000 0.000 Terminator

The atomic mass need be entered only where an element appears for the first time.

The H I could equally be HI. The assumed format for any ion is one or two characters
describing the element, and up to four characters starting with a capital letter describing
the degree of ionization. So, if you want some descriptor for molecular hydrogen, for
example, then you might have

H2J=5 1017.836 0.02360 1.180E9

The four characters for the degree of ionization may sound limiting, but there have not
been howls of protest so it has remained that way for decades.

The format could be a restriction if you are dealing with molecules, but you can use
some other descriptor. The requirements are that the 2-character ’element’ be a capital
letter followed by anything which is NOT a capital letter, and the ionization level a
capital letter followed by any three characters. The appearance of the first upper case
letter in positions 2 or 3 of the character string is taken as the start of the ionization
level. So e.g. SiII is interpreted as the element Si with ionization level II, but SIII is
interpreted as element S, ionization III. H2J=5 becomes ’element’ H2, ’ion’ J=5.

The wavelengths, oscillator strengths etc. are then strung out along the same line in
the file in any convenient format to any convenient precision, with at least one space
between each quantity to separate them. They are held internally as double precision
variables. Comments can appear after the required information - these are ignored. If
you look at the atom.dat file provided you will see what is allowed.

14.2 Special ions

In the example above the ion list started with some strange ones - ??, >>, <> etc. These
are handled somewhat differently from the normal ions which appear further down in
the list in this example, and all have been introduced to help handle either our own

52

ignorance (unidentified lines) or deficiencies in the data. We deal with each in turn.

14.2.1 Unidentified lines

The ion labelled ’??’ is simply a marker for an unidentified line. It can have any
wavelength, oscillator strength, Γ-value and mass you choose, but in the default atomic
data file it has the same values as for Lyα (apart from the mass, which is irrelevant).
The only advantages this has over calling the ion ’H I’ is that there are no associated
higher order Lyman lines, and that it is easy to see where you have still to search for
identifications. It can be useful to just create a file of the ’??’ lines and look for common
line ratios in the hope of finding a further absorption system.

14.2.2 Region wavelength shifts

The >> tag is handled differently, and is used to check for, or allow for, wavelength
shifts between spectral regions which might arise if the wavelength calibration has not
been done properly. Obviously normally the best thing to do under these circumstances
is to go back and redo the wavelength calibration more carefully, but this is not always
possible.

If the line (fort.26 format)

>> 2.428120SA 0 1.25 0 1.00SC 0

appears in the startup (first guesses) file, then VPFIT applies a velocity shift to each
region in which the redshifted ’line’ falls (initially with a shift of 1.25 km s−1) when
fitting. The main use for this is when you suspect the wavelengths might be in error,
and are fitting more than one region with lines from an ion, or system, spanning those
regions.

For example, if you are worried about a shift between CIV 1548 and 1550, which might
arise either because of poorly known rest CIV wavelengths or because of poor wavelength
calibration, you might use the following:

%% datafile 1 4174.3265 4176.5921

%% datafile 1 4181.2306 4183.6780

C IV 1.696697 0.000011 6.70 3.60 11.999 0.461 0 !

C IV 1.696836 0.000039 15.44 6.34 12.486 0.183 0 !

C IV 1.697105 0.000000 8.28 0.05 13.838 0.002 0 !

>> 2.440478SZ 0.000000 -0.49 0.03 1.000SH 0.000 0 !

In this case the reference region is CIV 1548, and the region containing CIV 1550 also
contains the >> ’line’, so is shifted by −0.49 km s−1 with respect to the reference region
to start. The value will change at each iteration for an overall best fit.

In this case the shift could be from poor CIV rest wavelengths. The estimate here of
−0.5 km s−1 was from data on HE0515−4414 using the Morton wavelengths (ApJS, 149,
205, 2003), while Petitjean & Aracil (A&A, 422, 523, 2004) suggest a double separation
of ∼ 0.7 km s−1 less then the Morton value. Revised wavelengths have now been included

53

in the atom.dat file, so if you are using this one don’t be surprised if the results are not
compatible with any previous values.

You can also use the >> flag to allow for possible wavelength shifts between two datasets
for the same line by adding a non-zero integer to the parameter line to tell the program
which file you may want to apply a correction to. For example if you were just looking
at the CIV 1550 line in the dataset above, but had two files 1 & 2 and were suspicious
about the wavelength calibration for the second, you could use

%% datafile1 1 4181.2306 4183.6780

%% datafile2 1 4181.2306 4183.6780

C IV 1.696697 0.000011 6.70 3.60 11.999 0.461 0 !

C IV 1.696836 0.000039 15.44 6.34 12.486 0.183 0 !

C IV 1.697105 0.000000 8.28 0.05 13.838 0.002 0 !

>> 2.440478SZ 0.000000 0.00 0.00 1.000SH 0.000 2 !

The program then compute the best fitting shift in wavelength to make the CIV line in
datafile2 to agree with datafile1. The ’2’ in the last column for the >> component tells
the program to apply that ’line’ only to the second file+region in the region list.

Note that if you are using this mode you should not apply a wavelength shift to all
regions - the values are then unconstrained!

14.2.3 Continuum adjustment

Precise continuum estimates can be difficult in crowded regions e.g.the Lyα forest in
QSOs, so it is quite likely that the continuum estimates there are not correct. You
can adjust the continuum level using a linear multiplicative factor. It is based on false
elements as tags, and the line in the fort.13 format file looks like:

<> level redshiftN linterm(M) 0.0 0.00E+00 (region number).

The value of level is usually near unity [it is what the continuum is multiplied by
at the wavelength corresponding to (1+redshift)×1215.6701=reference wavelength,
which must be within the relevant wavelength chunk], and the redshift MUST be fixed.
The linterm value may be fixed (usually at zero, for a constant rescaling of the contin-
uum) or may be left to be determined by the program. The input continuum through
the fitting region is multiplied by (level + linterm×(wavelength/reference wavelength
- 1), so for small adjustments level is somewhere vaguely near unity. You can input
this interactively as well. In cursor mode it asks if you want to fit the slope or not,
and you fix it (at zero) by pressing the left mouse button or the central one, allow it to
vary by pressing on the right mouse button. Be warned – it is all too easy to have a
continuum change trade off against a broad line, so it is probably best to use this only
for (small) final adjustments to the parameters. If these final adjustments are not small,
worry about the reliability of your results.

As an example using the alternative input (fort.26) format

%% datafile 1 4174.3265 4176.5921

%% datafile 1 4181.2306 4183.6780

54

C IV 1.696697 0.000011 6.70 3.60 11.999 0.461 0 !

C IV 1.696836 0.000039 15.44 6.34 12.486 0.183 0 !

C IV 1.697105 0.000000 8.28 0.05 13.838 0.002 0 !

<> 2.440478SZ 0.000000 0.00 0.00 1.000 0.000 0 !

In this case a correction to the input continuum is applied to the region(s) containing
the wavelength (1 + z) × 1215.6701 = 4182.486 A, so the one containing the CIV 1550
lines.

The region number parameter is rarely used. If it is zero it is ignored, but for a non-
zero value the continuum adjustment is applied only to the region corresponding to that
number, independent of effective wavelength. In the example above if the final zero
were 2 in the <> line it would have the same effect. Note that you still need a reference
redshift for the linear term in the continuum adjustment. It can be used where there
are overlapping regions at e.g. different resolutions used in the fit, in cases where the
continuum adjustment would otherwise be applied to more than on fitting region.

14.2.4 Zero level adjustment

It is not at all uncommon for there to be some residual flux in the bottoms of what
appear to be completely saturated lines, and in such cases the automatic line addition
feature (see section 6.4) just stacks in lots of spurious components to try and make the
overall profile.

If you use the ’line’ (1215.67 assumed wavelength, to make life easy (?), but you
can change it in the atom.dat file), then the continuum is left where it was, and the
fitted spectrum stretched linearly to the new zero level. Note that the first parameter
zero-level is now expressed as a fraction of the continuum, rather than put on a scale
where it is forced to look like a column density, so the line in fort.13 now looks like:

__ zero-level redshiftN b-value 0.00 0.00E+00 n

where the zero level adjustment will normally be around zero (it may be negative), and
will be less than 1! As before, N is a sample letter to fix the redshift, which should be
such that 1215.67*(1+z) is within the region of interest. The number n is the dataset
number for which the zero level is to be adjusted (1 for first region, 2 for second,
etc.), and this is not needed if there is only one region which contains the wavelength
1215.67×(1+redshift) so is usually set to zero (= ignore it). It performs a linear fit of
the form zero− level+ b− value ∗∆λ/1215.6701× (1 + redshift), and you can fix
either of the other two values (indeed, it usually is best to set the b-value to zero and
fix it, but occasionally you might want a slope).

Note that the zero level adjustment applies to the input spectrum received at that point,
so all the real ions with lines in that region should appear higher in the list than the
’ ’ one. Continuum adjustment matters less, but it is probably best to adopt a policy
of putting the ’ ’ last just for internal consistency.

55

14.3 Extra parameters

For those interested in fine structure constant or electron/proton mass changes with
redshift a further column has been added, as an optional extra. For these the format is

Ion λ (A) fik Γ mass q comments

#q
?? 1215.6701 0.416400 6.265E8 1.00 No ID
>> 1215.6701 0.416400 6.265E8 1.00
<> 1215.6701 0.416400 6.265E8 1.00

1215.6701 0.416400 6.265E8 1.00
H I 1215.6701 0.416400 6.265E8 1.00794 Morton(03)
H I 1025.7223 0.079120 1.897E8
H I 972.5368 0.029000 8.127E7
....
FeII 2600.1729 0.2394 2.70e8 55.847 1356 M03g
FeII 2586.6496 0.069125 2.72E8 55.847 1520 M03g
FeII 2382.7652 0.320 3.13E8 55.847 1498 M03g
FeII 2374.4612 0.0313 3.09E8 55.847 1640 M03g
....
PbII 1433.905 0.870 1e8 206 Kurucz ab=4
end 0000.000 0.000000 0.00000 0.000 Terminator

Here the effective q-value is in cm−1 (as defined by Murphy et al., MNRAS, 345, 609,
2003). Note that the atomic mass is now needed for every line where there is a non-zero
q-value, but if it is zero (or some character string which would be interpreted as zero)
then it will fill in the mass from a previous value for the same atom. With this format
those who are not interested in α or µ don’t have to change their atom.dat files, or
even know the capability exists. As before, you can string numbers out along the line
with any convenient spacing (don’t use tabs though), and add any comments [anything
after column 7, non-numeric before].

A warning is given if an attempt is made to use an extended atomic data file of this
form when there is not enough space allocated for the number of variables needed. It
happens early on when VPFIT is reading in the atomic data, so look out for it! There
are two possible causes:

1. The setup file (see section 7) does not contain

NOVARS 4

which tells it there are four variables per line in the list, not the usual three.

2. Not enough space was allowed for the fourth variable when the program was com-
piled. To remedy this in the file vp sizes.f set

* MAXimum Parameters Per System

integer maxpps

parameter (maxpps = 4)

56

if the value had previously been 3.

If flagged by the letter ‘q’, or ‘Q’ for tied values (using the usual two-letter sequence,
with the second letter changing for different tied sets), the fourth parameter is taken as
the ∆α/α value (internally scaled up by a factor of 106) which applies to that transition.
Normally the same value for this quantity should apply to all ions at a given redshift.
To achieve this, tie the appropriate values in the usual way. Where there is no potential
line shift due to possible changes in ∆α/α, the values should be fixed at zero.

The format of the output for ∆α/α can be changed. If you want values in units of 10−5,
for example, then in the VPFSETUP file use

daoaunit 1E-5

The default is actual ∆α/α values, i.e. daoaunit 1.

For molecular hydrogen the wavelength shifts are defined slightly differently, with

λi = λ0
i

(

1 +Ki
∆µ

µ

)

In the atomic data file for the ‘element’ H2 the extra parameter for each transition is just
the Ki value, and the fitted ∆µ/µ values are subject to the same display (and internal)
scalings as ∆α/α above. The tied flag for H2 shifts is m or M replacing the q or Q above.

If you want the region by region flux statistics for computing a lower limit to the error
in ∆α/α, then in the VPFSETUP file put

WR26FS

and they will be written to the fort.26 output summary file.

15 Fitting simulated data

15.1 Single wavelength region fits

There is nothing different required for fitting simulated spectra. You can go through as
for a real spectrum, and obtain fit parameters. However, you probably want to do this
many times, for similar wavelength regions with similar line identifications, and don’t
want to repeat the same mindless set of operations for each of them. At least for simple
cases there are some ways of easing the burden.

The first thing to do is set up a file containing a list of all the spectra you want to fit,
giving the fit regions. Here we’ll call it input.13 and it might look like:

%% spectrum1 1 3535.23 3540.09

%% spectrum2 1 3535.23 3540.09

%% spectrum3 1 3535.23 3540.09

%% spectrum4 1 3535.23 3540.09

.....

57

where there is a blank line between each of them in this example. You could put in first
guesses to replace the blank lines if you wish, e.g. for OVI 1032:

O VI 2.42812 0 11.0 0 13.0 0.0

in all cases, but that is not necessary. You can specify which line to use instead in the
setup file (pointed to by the environment variable VPFSETUP, see 7). If the blank lines
are left in, the setup file should contain

guessline OVI 1031 Line guesses are given feature (default is Ly-a)

Since there are no initial estimates for the Voigt profile parameters, VPFIT then guesses
some for itself based on a crude separation into distinct components, assuming that all
are identified as the line specified by the guessline setup parameter. The default if
guessline is not specified is Lyα.

You should also ensure that the output control setup parameter

! ---- output control

! wr26s f26.w fort.26 summary root filename

are commented out, as here, or removed from the setup file. This ensures that the
output summary is written sequentially to a single file - fort.26 whether you like it or
not - and that successive fits don’t overwrite the previous ones! It will produce a giant
results file fort.26, which you absolutely must copy somewhere before restarting the
program else the results will be overwritten. I have tended to edit the input file to do
things in manageable chunks (of say 100 spectra at a time), and then append this to an
accumulated results file before restarting.

Then, when you run VPFIT the initial sequence will look like, where the > at the
beginning of a line shows where the user provides input:

....

Default line is O VI 1031.9261

....

options: <CR> for previous value

I - interactive setup and fit

F - run from an input file

D - display profiles from input file

? for help

option (key) (key)...

> f ad ec 14.5 1.0

Add lines if prob(tot) < 0.010000 or prob(KS) < 0.00000001

Try removing lines at end if logN < 14.50 and err(logN) > 1.00

Column density (n), logN (l) or emission (e), scalefactor [l, 1.0]

>

Parameter input file, # entries? [fort.13,1]

58

> input.13,999

filename : spectrum1

spectrum number: 1

ASCII file input

Resolution 6.7 km/s

260 data values

rms set to error values

Start & end chans: 60 203

1 regions fitted

1 features found

O VI 13.0310514 2.42811519 13.4834161

no. of ions for fitting is 1

ion N z b bturb temp

iteration : 0 (1)

chi-squared : 1.243 (175.2894, 141)

O VI 13.03105 2.4281152 13.4834 0.00 0.00E+00 0 ! 1

.....

You need to tell the program that there is more than one dataset, and the

> input.13,999

will make sure up to 999 fit sets are read (if you have even more, make the number
larger!). It will ask you if you want to look at the last one in the list only if the number
given matches the number of datasets. You can use option 9 in the program to check
that you like the look of the results it obtains if you are worried.

The fort.26 file will contain something like:

%% spectrum1 1 3535.2300 3540.0900 !

! Stats: 3 1.2011177 144 141 0.052 0

O VI 2.428119 0.000008 10.88 1.03 13.001 0.031 0 !

%% spectrum2 1 3535.2300 3540.0900 !

! Stats:

where the ’Stats’ line gives, in order, number of iterations, noramlized χ2, data pixels
covered, degrees of freedom for fit, and the approximate probability that the fit describes
the data.

There will be some regions where the fitting process fails. These are easily identified by
looking through the fort.26 file to see where the final fit probability is too small. You’ll
need to see if you can provide better initial guesses for these ones by hand.

The input file containing the filelist and regions with blank lines can be a slight pain
to set up initially, but once you have one then if you set up filenames in sequence
with different names and regions then global edits can be used to provide such files for
different simulations.

59

15.1.1 Single file multiple simulations

You’ll need something to convert whatever data format you have to a FITS file, with
many spectra covering the wavelength same region. The FITS file now contains a 2-D
dataset, with each spectrum a single x-slice. There is a program bintofits included in
case you have something in the right input format (it was written for Matteo Viel), so
you can see what might be involved. The following instructions apply for that program,
and for single zone Lyα only simulations, so some things are quite specific:

Assuming that you have blocks of simulations covering the same wavelength range, you
can run a preprocessing program to convert to FITS data and error files and then feed
these into a multi-run VPFIT fitting procedure. As things stand:

• You need a simulation at a given redshift with a velocity range covering whatever
Matteo said it was, as a binary data file of spectra with the maxima at the ends of
the range, convolved with the instrument profile at UVES/HIRES resolution, with
noise added, and a signal vs error lookup table in ASCII. If an error file is provided
in the same format as the data file, just run the conversion program bintofits on
the error file as well to convert it to a fits file, but make sure you don’t overwrite
the fit guess file which ALWAYS goes to a file called fort.13 - so you might do the
error file first. If you do, then if the datafile is to become <filename>.fits, then
the error file should be <filename>.sig.fits if you don’t want to edit the header in
the data fits file.

• Run the program bintofits to convert from binary to fits form. This program
generates a datafile with an extended spectrum so that the convolution with the
instrument profile in vpfit does not give funny results, also an error file and a fit
guess file for vpfit. The data file has the required information on wavelengths,
errors, resolution etc in the header, so no extra header editing should be needed.
It asks you for the binary filename, the output filename (with a suggested default),
and the ASCII signal vs error table filename(which may not be needed). The fit
guess file should look like (for redshift z = 3)

%% filename 1 4862.680 4888.040

%% filename 2 4862.680 4888.040

%% filename 3 4862.680 4888.040

%% filename 4 4862.680 4888.040

.....

For z = 2.75 the wavelength limits should be 4558.76 and 4582.60, though since
they are just ends of fit ranges they don’t have to be too precise. If they are not
what you expect, then do a global edit on the fort.13 file.

60

• setenv VPFSETUP vp setup.dat where vp setup.dat might contain the following,
and in particular remove any reference to wr26s in that file, otherwise it will
continually overwrite the results of one spectrum on top of the results of the
previous one, and you’ll lose the information. You should also set

maxadrem 50

or something similar, since in some cases it requires more than the default num-
ber of add/remove line cycles (25) to converge. I also commented out the add
continuum parameters option so that continuum adjustment do not occur.

! adcontf 2.2 ...

You might also add

nopchan 0

to suppress lots of the intermediate output. Then you won’t get output to fort.18
(the full file giving each iteration result) and the fort.15 file (last iteration). The
fort.26 summary file is still written at the end of each spectrum fit and that is the
sole location for the results in this mode, and enough appears on the screen for you
to see if the program is getting nowhere. If you want to see what is happening on
the screen, use nopchan 1, if you want it on the screen and to fort.18 use nopchan
2, and if you want everything use nopchan 3.

• Run vpfit using as responses to the queries:

f ad 0.0025 0.0005 ec 14.5 2.0

<CR>

<input file (e.g. fort.13)> 1000 -- or however many you want in

this block, starting

with the first.

If you run a very old version it will not recognize the wavelengths, which are set
up as header variables in the form

GLWBASE 3.686535639476 Global log wavelength base

GLWINCR 2.267008475368D-06 Global log wavelength increment

• This will produce a giant results file fort.26, which you absolutely must copy
somewhere before restarting the program else the results will be overwritten. I
have tended to edit the input file to do things in manageable chunks (of say 100
spectra at a time), and then append this to an accumulated results file before
restarting.

Assorted notes:

If you want to stop a series of fits, then

touch stop series

in the directory you are operating from will terminate the program cleanly. touch stopit
will stop the iterative fit (adding and subtracting lines) for the current spectrum at a

61

convenient point - the program should then go on to the next one. touch stop stops the
current parameter search as if it had converged to a chi-squared minimum.

Note that, as with data from the telescope, the vpfit program will fail to converge to
an acceptable answer in about 5% of the cases (the precise number depends on the
column density distribution function and the line density), and so some hand restarting
is necessary for these. If you

grep ’ 0.000 ’ resultsfile | wc

or, if the default setup is used, you should find that the summary file has bad fits labelled
with the word ’BAD’, and so

grep ’BAD’ resultsfile | wc

you can see how often these occur. You can refit those regions and modify the accumu-
lated results file as appropriate. A fairly common reason for failing to converge is that
there is a saturated line which it is having trouble sorting out. I half expect an excess
of lines at around logN=17, since when fitting Ly-alpha only where it is on the flat part
of the curve of growth noise fluctuations can drive the fits to either end of the flat part.
You need more lines in the Lyman series to overcome this problem.

Convergence and run time:

Its a bit slow, and takes about 3 CPU mins per spectrum on a 2.4GHz laptop. With
the suppressed output there is a gain of about 30% in speed, so we wind up with a little
over two days per 1000 spectra. You can relax the convergence criteria at each iteration.
In the vp setup.dat file the line

chisqthres 0.001 4.0 0.01

results in the iterations terminating if the relative χ2 [(χ2(new) − χ2(old))/χ2(new)]
changes by less than 0.01 if the normalized χ2 is above 4.0, and less than 0.001 otherwise.
Those numbers are the defaults. I would not increase the last much (I tried, and the
program gets a bit lost), but you might try 0.001 2.0 0.01 to speed things up a bit.

15.2 Multiple wavelength regions

15.2.1 Single ions

The spectral file list with fitting regions method described above in Section 15.1 can be
extended to cover more than one region if a single ion is involved. If the list looks like:

%% spectrum1 1 3554.73 3559.61

%% spectrum1 1 3535.23 3540.09

%% spectrum2 1 3554.73 3559.61

%% spectrum2 1 3535.23 3540.09

.....

then the behavior is as above, but both regions, and so both lines of the OVI double in
this example, are fitted. The initail guesses are based on a search of the last region in
the list before the blank line ONLY, but the fits include all regions.

62

15.2.2 Two ions

If you have reason to believe that some ions are linked, e.g. HeII and HI in the example
here, then you can take the analysis further, for either simulations or real data. This
involves more setup file parameters:

xlink HI 0.0 HeII 2.0

turbulent

nofix

The interpretation of these lines is:

1. Crosslink HI and HeII, such that if the line adding routine within VPFIT adds HI,
for example, then HeII will be added at the same redshift with a column density
such that logN(HeII) = logN(HI) + 2.0− 0.0.

2. The HeII and HI Doppler parameters are linked through turbulence i.e. there is
no atomic mass dependence. If this is absent then thermal linkage is assumed.

3. If a base line is rejected in subsequent iterations, then the associated line (denoted
by upper case letters aginst the redshift) is also removed. So no systems are left
as having fixed redshifts.

Then for the default line ID (Lyα) the input.13 file can then look like:

%% flux_He2 1 1032.850 1037.920

%% flux_H1 1 4133.2800 4153.5200

%% ...

In principle this could be extended to more than two ions, but this has not been tried...

63

16 RDGEN with VPFIT: their use together

The interactive mode of VPFIT has some low level use, once you know where the lines
are and have at least suggested identifications, but it does not help much with that
essential first step. If you are presented with a spectrum and know little about it, then
you have to try to identify lines, and then, if you want to fit them, give VPFIT some
start-up guesses. There are lots of ways of doing this, with varying degrees of tedium
and trial-and-error. In this section we illustrate how RDGEN and VPFIT can be used
together to set up the fits, fit the profiles, and examine the result.

We have used the Keck HIRES spectrum of Q2206 − 19, which is one of those made
available by Jason X Prochaska & Arthur M Wolfe. It is available from

http://www.ucolick.org/ xavier/DLA/Spectra/HighRes/index.html. There are two files,
the data in Q2206 f.fits & Q2206 e.fits. Amost inevitably, the default naming convention
for VPFIT files is different from theirs, so to make life easier later, you should change
the error file name to Q2206 f.sig.fits (e.g. by mv Q2206 e.fits Q2206 f.sig.fits).
The .sig extension to the data file name (minus the .fits) is automatically picked up as
the error file by VPFIT.
If you are using the standard setup files, and have not reset the environment variables
from the standard ones, then
$ rdgen

------ RDGEN 10.0 ------

and a fair amount of startup information
>>pf hiion.pg

>>pf loion.pg

....
>>pf CIV.pg

....
>>fq

Data files in this directory are:

1 Q2206 f.fits

2 Q2206 f.sig.fits

>>

Now the program has finished loading whatever was set up for it (including not finding
any .fits files in this case), you first need to read the data, so at the >> prompt enter

rd Q2206 f

(you don’t need the .fits, but if you do put in in it wll still read it). You should get
the question full continuum name?, to which a <CR> will do - it then assumes unit
continuum. There is also a cryptic response Using rescaled error array for rms which
you can ignore.

Then you might as well look at it, plotting with the cursor:
>>pg

plot parameter? (type he for options list)

>

PGPLOT device? [/xw]

>

64

Figure 4: The Keck HIRES spectrum of Q2206 − 19. The grey curve is the 1-σ error
estimate - bad pixels are shown by the error going off-scale.

Expand plot if needed:

Cursor ("e" to mark edges, "q" when OK)

will do that, and with <CR> at each > you should have a plot on the screen. If you
have the defaults set, it should look like Fig 4. If it does not, then type a (for ’all the
spectrum’) in the graphics window, which is where control has been transferred to.

Here the green line is an estimate of the (unit) continuum, and the grey one is the 1σ
error estimate.

You learn nothing from the whole spectrum, so to select a part which may be of interest.
For example, the strong FeII 2600 absorption at ∼ 5245A by putting the cursor on 5200A
(the y-position does not matter), clicking the left mouse button, moving it to 5300 and
clicking again. You can expand this even further by doing the same then at e.g. 5240
& 5250A. You should then see something which looks like Fig 5.

A single line like that is not desperately informative. It would be nice, perhaps, to see
how it relates to heavy element lines. It would also be vaguely useful to get rid of the
uninformative error array from the plot at this stage, so to do this type C in the plot
window. Now to see other lines in the same redshift system as this lyα, set the cursor
in the middle somewhere (like 5245A), and still in the graphics window type v (for
velocity plot). A list1 then appears in what had been the command window,

1The VPFIT source comes with a subdirectory ’pgfiles’, which contains lists of lines one might want

to see put on a common velocity scale. The filenames are mostly indicative of what is in them e.g.

hiion.pg includes a few Lyman series, plus CIV, NV, OVI, SiIV; loion.pg Lyman lines plus CII, OI,

SiII etc; lowz MgII, FeII etc.

65

Figure 5: A section of the Keck HIRES spectrum of Q2206-19.

File ID?

1 hiion.pg

2 loion.pg

3 lohi.pg

4 lyabg.pg

5 lyman.pg

6 lowz.pg

7 CIV.pg

.....

n FeII.pg

o lointhi.pg

p sdlaion.pg

.. in plot window

Try - still in the plot window - typing 6. Then in the plot window you’ll get a list
of lines, starting from the bottom with NaI 5891 (which is outside the data range),
and including lines from MgI, MgII, ALII, AlIII, SiII, CaII and FeII. Put the cursor on
FeII 2600.17 (the y-position within or just above that string, the x-position does not
matter). You then see a velocity scale plot similar to Fig 6 (with different colours to
stand out better against a black background).

So far we’ve not done much, but we have now reached the stage where we can set some
regions and initial parameters for us by VPFIT. Suppose you want to fit FeII at this
redshift. From the FeII 2586 line it looks as if there are at least fousomething like seven
components, and 2367 is so weak as to be unmeasurable. First we might as well write

66

Figure 6: A velocity plot showing singly ionized species (mostly) relative to a reference
redshift of z = 1.01717.

67

out the fit regions for the lines. It does not matter in which order, so with the y-cursor
between the 0 and 1 levels for FeII 2344, set the x-position slightly beyond where the
continuum to the left of the line is reached - say at about -120 km s−1 relative to the
strongest component - and (still in the plot window) type b (for boundary). Move the
x-cursor to a about 60 to the right if the 1304 line and do it again. Something like

%% Q2206 f.fits 1 4726.8008 4729.6006

will appear in the text window. Do the same for the other FeII lines, including 2367
if you feel like it. The line is not there, but it does provide an upper limit to the FeII
column density. You will then have something like:
%% Q2206 f.fits 1 4726.8008 4729.6006

%% Q2206 f.fits 1 4773.8838 4776.7646

%% Q2206 f.fits 1 4787.7378 4790.6665

%% Q2206 f.fits 1 4804.4941 4807.3672

%% Q2206 f.fits 1 5215.5986 5218.7466

%% Q2206 f.fits 1 5242.8657 5246.0151

Now we need some initial line guesses. In the FeII 2586 section put the x-cursor where
you think a velocity component is, and type l (for line). Do this as many times as you
think there are components - I guessed four, so wound up with (ion, redshift, 0, Doppler
b, 0,log column, 0) sets:
FeII 1.016660 0.000000 5.74 0.00 12.995 0.000

FeII 1.016774 0.000000 7.55 0.00 13.253 0.000

FeII 1.016823 0.000000 11.36 0.00 13.684 0.000

FeII 1.016921 0.000000 4.00 0.00 12.963 0.000

FeII 1.017008 0.000000 3.00 0.00 12.473 0.000

FeII 1.017155 0.000000 10.69 0.00 14.351 0.000

FeII 1.017248 0.000000 9.78 0.00 14.220 0.000

So you should now have something you can copy and paste directly into a VPFIT input
file (sometimes simply called fort.13), which, after adding something to tell the program
the instrument resolution for each region, looks like
%% Q2206 f.fits 1 4726.8008 4729.6006 vfwhm=6.5

%% Q2206 f.fits 1 4773.8838 4776.7646 vfwhm=6.5

%% Q2206 f.fits 1 4787.7378 4790.6665 vfwhm=6.5

%% Q2206 f.fits 1 4804.4941 4807.3672 vfwhm=6.5

%% Q2206 f.fits 1 5215.5986 5218.7466 vfwhm=6.5

%% Q2206 f.fits 1 5242.8657 5246.0151 vfwhm=6.5

FeII 1.016660 0.000000 5.74 0.00 12.995 0.000

FeII 1.016774 0.000000 7.55 0.00 13.253 0.000

FeII 1.016823 0.000000 11.36 0.00 13.684 0.000

FeII 1.016921 0.000000 4.00 0.00 12.963 0.000

FeII 1.017008 0.000000 3.00 0.00 12.473 0.000

FeII 1.017155 0.000000 10.69 0.00 14.351 0.000

FeII 1.017248 0.000000 9.78 0.00 14.220 0.000

Now try running that file as a VPFIT starter.
$ vpfit

68

....

options: <CR> for previous value

I - interactive setup and fit

F - run from an input file

D - display profiles from input file

? for help

option (key) (key)...

> f ad

Where the f ad is what you type. f to say read from a file, and the ad bit to get the
program to add lines if the fit is not good enough. Then
Column density (n), logN (l) or emission (e), scalefactor [l, 1.0]

>

Parameter input file, # entries? [fort.13,1]

> or if not fort.13, your input filename from above

VPFIT then gives a commentary on how its getting on, and adds a small continuum
adjustment, to end up with
iteration : 14 (2)

chi-squared : 1.121 (581.7852, 519)

FeII 12.76844 1.0166652 6.2749 0.00 0.00E+00 0 ! 1

FeII 13.10892 1.0168380 4.1470 0.00 0.00E+00 0 ! 2

FeII 12.80161 1.0167800 4.9478 0.00 0.00E+00 0 ! 3

FeII 12.88136 1.0169360 5.1196 0.00 0.00E+00 0 ! 4

FeII 12.52347 1.0170344 5.4631 0.00 0.00E+00 0 ! 5

FeII 14.00015 1.0171633 7.3806 0.00 0.00E+00 0 ! 6

FeII 13.65137 1.0172617 4.6205 0.00 0.00E+00 0 ! 7

<> 0.99153 3.2916027SZ 57.6233 0.00 0.00E+00 0 ! 8

Rescaled parameter errors:

FeII 0.01117 0.0000011 0.2321 0.00 0.00E+00 ! 1

FeII 0.03147 0.0000022 0.3774 0.00 0.00E+00 ! 2

FeII 0.08432 0.0000051 0.7273 0.00 0.00E+00 ! 3

FeII 0.01650 0.0000010 0.3742 0.00 0.00E+00 ! 4

FeII 0.05816 0.0000027 0.9796 0.00 0.00E+00 ! 5

FeII 0.01128 0.0000011 0.2373 0.00 0.00E+00 ! 6

FeII 0.01561 0.0000013 0.1486 0.00 0.00E+00 ! 7

<> 0.00345 0.0000000SZ 17.1141 0.00 0.00E+00 ! 8

statistics for whole fit:

Runs test K-S test Chi-squared Chans ndf APr Xp(.68) Xp(.95) Xp(.99)

0.00000 0.00474 581.79 542 519 0.029 533.75 572.83 596.25

Statistics for each region :

Start End Chi-squared Chans df?

4726.51 4729.92 104.98 89 68 0.003 < Prob < 0.119 g= 0.003 1

4726.51 maxdev 1.0337 0.236 0.956 1.358 1.627

4773.57 4777.07 52.08 91 70 0.946 < Prob < 1.000 g= 0.946 2

4773.57 maxdev 0.8445 0.474 0.956 1.358 1.627

4787.44 4790.99 86.21 92 71 0.106 < Prob < 0.651 g= 0.106 3

4787.44 maxdev 0.6922 0.724 0.956 1.358 1.627

4804.20 4807.67 103.59 89 68 0.004 < Prob < 0.138 g= 0.004 4

69

4804.20 maxdev 1.3182 0.062 0.956 1.358 1.627

5215.26 5219.08 109.81 91 68 0.001 < Prob < 0.087 g= 0.001 5

5215.26 maxdev 1.0405 0.229 0.956 1.358 1.627

5242.53 5246.35 125.11 90 69 0.000 < Prob < 0.009 g= 0.000 6

5242.53 maxdev 1.6796 0.007 0.956 1.358 1.627

Plot? y,n, c=change device, t=change ticks [y]

>

You can plot each region idividually to see how good the fit looks, and then exit by
Plot? y,n, c=change device, t=change ticks [y]

> n

Summary output was to f26.9p5w4728

Fit more lines? [n]

> n

Have a look at the summary output, f26.9p5w4728, which is an abbreviated form of
the fit results with everything needed for a restart if you want to. It should contain
something like:
%% Q2206 f.fits 1 4726.8008 4729.6006 vfwhm=6.5 ! 0.119 89 2010/10/19

%% Q2206 f.fits 1 4773.8838 4776.7646 vfwhm=6.5 ! 1.000 91 2

%% Q2206 f.fits 1 4787.7378 4790.6665 vfwhm=6.5 ! 0.651 92 3

%% Q2206 f.fits 1 4804.4941 4807.3672 vfwhm=6.5 ! 0.138 89 4

%% Q2206 f.fits 1 5215.5986 5218.7466 vfwhm=6.5 ! 0.087 91 5

%% Q2206 f.fits 1 5242.8657 5246.0151 vfwhm=6.5 ! 0.009 90 6

! Stats: 14 1.1209734 542 519 0.029 0

FeII 1.0166651672 0.0000010938 6.27487 0.23210 12.768436 0.011167 0 !

FeII 1.0168379718 0.0000022476 4.14700 0.37738 13.108916 0.031467 0 !

FeII 1.0167800205 0.0000050995 4.94784 0.72731 12.801610 0.084319 0 !

FeII 1.0169360041 0.0000009907 5.11960 0.37417 12.881360 0.016497 0 !

FeII 1.0170344150 0.0000027054 5.46309 0.97965 12.523467 0.058155 0 !

FeII 1.0171632821 0.0000010815 7.38065 0.23725 14.000153 0.011283 0 !

FeII 1.0172616675 0.0000012609 4.62046 0.14859 13.651367 0.015614 0 !

<> 3.2916026553SZ 0.0000000000 57.62327 17.11410 0.991529 0.003448 0 !

If the FeII column density, velocity structure etc. is what you want to know, that is
it. However, the velocity plot (Fig 6) also showed MgII with similar structure. If you
go through the same procedure for that you might wind up with a solution (here in
f26.9p5w5640) along the lines of:
%% Q2206 f.fits 1 5637.7109 5642.3652 vfwhm=6.5 ! 0.454 124 2010/10/19

%% Q2206 f.fits 1 5652.1602 5656.9971 vfwhm=6.5 ! 0.647 128 2

! Stats: 7 1.1208850 252 220 0.105 0

MgII 1.0169320212 0.0000262899 30.25758 2.08731 13.438610 0.023898 0 !

MgII 1.0171761089 0.0000113353 7.47677 2.83208 14.685478 1.336895 0 !

MgII 1.0174467271 0.0000044869 0.20000 0.25662 11.395206 0.368958 0 !

MgII 1.0175749588 0.0000046127 5.32584 1.27258 11.416082 0.061674 0 !

MgII 1.0166634806 0.0000016698 4.95192 0.36214 13.038178 0.019946 0 !

MgII 1.0165951259 0.0000051255 3.55825 0.58716 12.192366 0.108438 0 !

MgII 1.0168093195 0.0000013777 7.05837 0.59932 13.303292 0.040241 0 !

<> 3.6514092229SZ 0.0000000000 8.19986 8.12270 0.999496 0.002665 0 !

MgII 1.0172744510 0.0000057217 2.65701 0.79527 14.545276 0.766496 0 !

MgII 1.0169380097 0.0000019075 1.46473 1.06155 12.918981 0.842270 0 !

MgII 1.0170333214 0.0000069261 1.18010 0.95608 12.575938 0.344313 0 !

70

(Note that sometimes after adding a continuum adjustment the program terminates
because the normalized χ2 increases - normally because the continuum adjustment is
not needed. In such cases just restart from where it left off by using the output summary
file as input.)

You might like the MgII and FeII to share the same velocity structure. If you do then
you’ll need to force the program to do that, and fit yet again with a new input file which
you can construct from the two you have by merging the two files sensibly. To do this
use Unix commands:
$ cp f26.9p5w5640 temp

$ cat f26.9p5w4728 >> temp

$ grep ’%%’ temp > fort.13

$ grep -v ’%%’ temp | sort -n -k 2,2 >> fort.13

This should give you a merged startup file which looks like:
%% Q2206 f.fits 1 5637.7109 5642.3652 vfwhm=6.5 ! 0.454 124 2010/10/19

%% Q2206 f.fits 1 5652.1602 5656.9971 vfwhm=6.5 ! 0.647 128 2

%% Q2206 f.fits 1 4726.8008 4729.6006 vfwhm=6.5 ! 0.119 89 2010/10/19

%% Q2206 f.fits 1 4773.8838 4776.7646 vfwhm=6.5 ! 1.000 91 2

%% Q2206 f.fits 1 4787.7378 4790.6665 vfwhm=6.5 ! 0.651 92 3

%% Q2206 f.fits 1 4804.4941 4807.3672 vfwhm=6.5 ! 0.138 89 4

%% Q2206 f.fits 1 5215.5986 5218.7466 vfwhm=6.5 ! 0.087 91 5

%% Q2206 f.fits 1 5242.8657 5246.0151 vfwhm=6.5 ! 0.009 90 6

! Stats: 7 1.1208850 252 220 0.105 0

! Stats: 14 1.1209734 542 519 0.029 0

MgII 1.0165951259 0.0000051255 3.55825 0.58716 12.192366 0.108438 0 !

MgII 1.0166634806 0.0000016698 4.95192 0.36214 13.038178 0.019946 0 !

FeII 1.0166651672 0.0000010938 6.27487 0.23210 12.768436 0.011167 0 !

FeII 1.0167800205 0.0000050995 4.94784 0.72731 12.801610 0.084319 0 !

MgII 1.0168093195 0.0000013777 7.05837 0.59932 13.303292 0.040241 0 !

FeII 1.0168379718 0.0000022476 4.14700 0.37738 13.108916 0.031467 0 !

MgII 1.0169320212 0.0000262899 30.25758 2.08731 13.438610 0.023898 0 !

FeII 1.0169360041 0.0000009907 5.11960 0.37417 12.881360 0.016497 0 !

MgII 1.0169380097 0.0000019075 1.46473 1.06155 12.918981 0.842270 0 !

MgII 1.0170333214 0.0000069261 1.18010 0.95608 12.575938 0.344313 0 !

FeII 1.0170344150 0.0000027054 5.46309 0.97965 12.523467 0.058155 0 !

FeII 1.0171632821 0.0000010815 7.38065 0.23725 14.000153 0.011283 0 !

MgII 1.0171761089 0.0000113353 7.47677 2.83208 14.685478 1.336895 0 !

FeII 1.0172616675 0.0000012609 4.62046 0.14859 13.651367 0.015614 0 !

MgII 1.0172744510 0.0000057217 2.65701 0.79527 14.545276 0.766496 0 !

MgII 1.0174467271 0.0000044869 0.20000 0.25662 11.395206 0.368958 0 !

MgII 1.0175749588 0.0000046127 5.32584 1.27258 11.416082 0.061674 0 !

<> 3.2916026553SZ 0.0000000000 57.62327 17.11410 0.991529 0.003448 0 !

<> 3.6514092229SZ 0.0000000000 8.19986 8.12270 0.999496 0.002665 0 !

You need to edit this to tell the program which FeII are associated with which MgII. This
is done by putting lower case letters after the redshift of one (the reference redshift), and
corredponding upper case letters after the associated ion (or ions if there are several),
and perhaps editing a Doppler parameter or two to make them look compatible. You
can normally get away with some fairly drastic looking associations in the hope that the
program will sort them out. So a restart file might look like:
%% Q2206 f.fits 1 5637.7109 5642.3652 vfwhm=6.5 ! 0.454 124 2010/10/19

%% Q2206 f.fits 1 5652.1602 5656.9971 vfwhm=6.5 ! 0.647 128 2

%% Q2206 f.fits 1 4726.8008 4729.6006 vfwhm=6.5 ! 0.119 89 2010/10/19

71

%% Q2206 f.fits 1 4773.8838 4776.7646 vfwhm=6.5 ! 1.000 91 2

%% Q2206 f.fits 1 4787.7378 4790.6665 vfwhm=6.5 ! 0.651 92 3

%% Q2206 f.fits 1 4804.4941 4807.3672 vfwhm=6.5 ! 0.138 89 4

%% Q2206 f.fits 1 5215.5986 5218.7466 vfwhm=6.5 ! 0.087 91 5

%% Q2206 f.fits 1 5242.8657 5246.0151 vfwhm=6.5 ! 0.009 90 6

! Stats: 7 1.1208850 252 220 0.105 0

! Stats: 14 1.1209734 542 519 0.029 0

MgII 1.0165951259 0.0000051255 3.55825 0.58716 12.192366 0.108438 0 !

MgII 1.0166634806AA 0.0000016698 4.95192 0.36214 13.038178 0.019946 0 !

FeII 1.0166651672aa 0.0000010938 6.27487 0.23210 12.768436 0.011167 0 !

FeII 1.0167800205ab 0.0000050995 4.94784 0.72731 12.801610 0.084319 0 !

MgII 1.0168093195AB 0.0000013777 7.05837 0.59932 13.303292 0.040241 0 !

FeII 1.0168379718ac 0.0000022476 4.14700 0.37738 13.108916 0.031467 0 !

MgII 1.0169320212AC 0.0000262899 10.25758 2.08731 13.438610 0.023898 0 !

FeII 1.0169360041ad 0.0000009907 5.11960 0.37417 12.881360 0.016497 0 !

MgII 1.0169380097AD 0.0000019075 1.46473 1.06155 12.918981 0.842270 0 !

MgII 1.0170333214AE 0.0000069261 1.18010 0.95608 12.575938 0.344313 0 !

FeII 1.0170344150ae 0.0000027054 5.46309 0.97965 12.523467 0.058155 0 !

FeII 1.0171632821af 0.0000010815 7.38065 0.23725 14.000153 0.011283 0 !

MgII 1.0171761089AF 0.0000113353 7.47677 2.83208 14.685478 1.336895 0 !

FeII 1.0172616675ag 0.0000012609 4.62046 0.14859 13.651367 0.015614 0 !

MgII 1.0172744510AG 0.0000057217 2.65701 0.79527 14.545276 0.766496 0 !

MgII 1.0174467271 0.0000044869 0.20000 0.25662 11.395206 0.368958 0 !

MgII 1.0175749588 0.0000046127 5.32584 1.27258 11.416082 0.061674 0 !

<> 3.2916026553SZ 0.0000000000 57.62327 17.11410 0.991529 0.003448 0 !

<> 3.6514092229SZ 0.0000000000 8.19986 8.12270 0.999496 0.002665 0 !

The resultant fit might be (with all the file region information removed):
MgII 1.0166004836 0.0000062796 4.00829 0.48429 12.276427 0.072433 0 !

MgII 1.0166636921AA 0.0000000000 4.24054 0.47065 13.016418 0.062213 0 !

FeII 1.0166636921aa 0.0000008504 5.90601 0.33128 12.749250 0.015210 0 !

FeII 1.0168133638ab 0.0000012695 8.66508 0.30080 13.183416 0.017713 0 !

MgII 1.0168133638AB 0.0000000000 7.18169 1.01723 13.300394 0.070999 0 !

FeII 1.0168423802ac 0.0000025199 2.20957 0.46396 12.695545 0.064481 0 !

MgII 1.0168423802AC 0.0000000000 24.63564 2.29012 13.239352 0.130358 0 !

FeII 1.0169384714ad 0.0000010284 4.51217 0.38700 12.839721 0.018557 0 !

MgII 1.0169384714AD 0.0000000000 3.42578 0.81127 12.794066 0.072467 0 !

MgII 1.0170351884AE 0.0000000000 6.90747 0.84268 12.876522 0.063838 0 !

FeII 1.0170351884ae 0.0000031022 6.06827 1.03482 12.562298 0.060039 0 !

FeII 1.0171625465af 0.0000011475 7.20960 0.23488 13.996297 0.011183 0 !

MgII 1.0171625465AF 0.0000000000 6.12331 1.12426 14.660359 0.487784 0 !

FeII 1.0172606943ag 0.0000012114 4.70418 0.14126 13.663937 0.022953 0 !

MgII 1.0172606943AG 0.0000000000 3.34677 0.15343 14.974409 0.179412 0 !

MgII 1.0174447068 0.0000045346 0.20000 0.25437 11.384483 0.317722 0 !

MgII 1.0175750447 0.0000046385 5.21090 1.53644 11.399992 0.074632 0 !

<> 3.2916026553SZ 0.0000000000 58.30159 15.46498 0.991512 0.004118 0 !

<> 3.6514092229SZ 0.0000000000 6.91587 7.82659 0.998618 0.002805 0 !

This is still not quite right, since the FeII Doppler parameter should be ≤ that for
MgII, and no less than that for MgII ×

√

(MgII/FeII mass ratio). You can ensure this
by tagging the associated Doppler parameters (see section 11.3). You might wish to try
this, but constraining the parameters further by linking them in this way does mean

72

you are likely to need further velocity components.

73

17 Fitting the Lyα forest

Automatic fitting of single regions with a known line is handled by setting up startup
files with just those regions in. In the default mode the file

%% q2000_norm_sp.fits 1 5502.57185 5513.57833

%% q2000_norm_sp.fits 1 4641.05459 4651.89758

%% q2000_norm_sp.fits 1 4399.58159 4410.39294

...

could be used with VPFIT, and then with the usual startup

....

options: <CR> for previous value

I - interactive setup and fit

F - run from an input file

D - display profiles from input file

? for help

option (key) (key)...

> f ad

Add lines if prob(tot) < 0.010000 or prob(KS) < 0.00000001

Column density (n), logN (l) or emission (e), scalefactor [l, 1.0]

>

Parameter input file, # entries? [fort.13,1]

> test.13 3

...

the program generates its own list of Lyα lines for each region and adds more until it
obtains a satisfactory fit (or gives up because it can’t). Each of these regions is fitted
independently, and the results go to the summary file.

However, these regions were chosen to correspond to Lyα, Lyβ and Lyγ centered on
the same redshift (∼ 3.53 in this case), and what one might really like to do is fit them
automatically together. If all have strong lines just putting the longest wavelength
region (Lyα) last in the list and omitting the blank lines between them so they are all
fitted together does not work very well. Lyα lines are put in for the last region only,
and the other regions are then fitted so badly that the program can (i.e. does) lose its
way completely.

An alternative procedure is to use the input file given above and fit the regions indepen-
dently, but ensuring that the lines found in the higher wavelength regions are put into
the continuum for the one which is being fitted. This can be done by

....

options: <CR> for previous value

I - interactive setup and fit

74

F - run from an input file

D - display profiles from input file

? for help

option (key) (key)...

> f ad cum test.cum

Add lines if prob(tot) < 0.010000 or prob(KS) < 0.00000001

Column density (n), logN (l) or emission (e), scalefactor [l, 1.0]

>

Parameter input file, # entries? [fort.13,1]

> test.13 3

...

The effect of the cum test.cum is to write the results cumulatively to the file test.cum,
and every time a new fit is started within VPFIT the parameters are read from this
same file and applied to the continuum before the fit is undertaken. So, when fitting
the Lyβ region in the example above, the results of the Lyα fits are put in as Lyβs in
that region, and then Lyα lines added to that region as needed. You can continue this
process up the Lyman series if you want to. The test case shown here stops at Lyγ.

The result of this procedure is not likely to be wonderful either, since the first Lyαs
were fitted without the higher order line constraints, and you need those particularly
for the higher column density systems. You can fix this by going around again, with a
new input file of first guesses from test.cum which you can make by

$ grep ’%%’ test.cum > restart.13

$ grep -v ’%%’ test.cum >> restart.13

You now have a file which looks like

%% q2000_norm_sp.fits 1 5502.5719 5513.5783 !

%% q2000_norm_sp.fits 1 4641.0546 4651.8976 !

%% q2000_norm_sp.fits 1 4399.5816 4410.3929 !

! Stats: 6 0.9356639 220 185 0.725 0

H I 3.5280373082 0.0000040424 24.00206 0.42508 14.153667 0.006331 0 !

H I 3.5302387347 0.0000047564 23.60935 0.31797 13.773950 0.006908 0 !

H I 3.5319355734 0.0001543133 22.66707 6.33160 13.567904 0.331476 0 !

....

which is now a first guess file for restarting VPFIT, now doing a fit to all the lines
simultaneously over the regions.

....

option (key) (key)...

> f ad

Add lines if prob(tot) < 0.010000 or prob(KS) < 0.00000001

Column density (n), logN (l) or emission (e), scalefactor [l, 1.0]

>

75

Parameter input file, # entries? [fort.13,1]

> restart.13

....

There is still room for confusion - metal lines and bad zero levels are potential prob-
lems. You can avoid metal lines by having their parameters in the test.cum file before
you start. The trouble then is that you have to strip out that information from the
restart.13 file when you are creating it. Zero level adjustments can be edited into the
restart.13 file if you need to, but that has to be done by hand. It is probably not the
greatest idea to put zero levels in straight way, but to wait until VPFIT has dealt with
the restart.13 file as far as it can (i.e. until adding more lines does not help), and
then putting zero level corrections into that best fit, and then restarting yet again.

This process can be slow with the default startup parameters for VPFIT. To speed
things up for echelle forest spectra in the VPFSETUP file use

! ---- internal substepping ----

nsubmin 1 minimum number of subpixels per pixel

nsubmax 1 maximum number of subpixels per data pixel

otherwise spurious narrow lines force internal substepping. If you want to you can reset
nsubmax to a larger number for a final go-through.

There is still a hand-held component to all this, and that is setting the fitting regions
and generating the intial startup files. One way of doing this is to use RDGEN in the
cursor plot mode (’pg’), setting region boundaries by cursor position (using ’b’ in the
plot window) for Lyman lines plotted in stack velocity mode. See the RDGEN writeup
for details of this.

While this is OK for single sets of regions, and so be used for the Lyα-only region of
the forest, it is still difficult to fit the whole forest self-consistently in this way. With
individual region sets lines identified as Lyα near e.g. a Lyγ of interest may well be
Lyβs. If you want to do it properly there are too many linked regions by the time you
get a reasonable way down the Lyman series. If anybody wishes to suggest a solution
to this problem I’d be glad to hear about it.

76

A Ancillary programs

A.1 FITS header editing

There is a simple program HEDIT for adding (or removing) items from FITS headers
for those who don’t have the capability on their machine e.g. through IRAF. On linux
machines ’make hedlx’ will compile and link it, after the makefile has been edited to
reflect where the CFITSIO library is held.

Then

./hedit

will run it. There is one request input line

Filename, variable, value, action?

Entering a ’?’ then gives

Parameters are:

1: full filename (including the .fits)

2: keyword to be added/removed/updated

3: value associated with the keyword

this is stored as a character string or

a double precision variable

4: update (u), delete(d) or full list (l)

must be lower case

If 4th parameter omitted, update is assumed

unless 2nd and 3rd omitted as well, in which

which case an abbreviated keyword list is given

(HISTORY, HIERARCH & ESO omitted)

... which about says it all. The ’u’ option will update a keyword if it is already in the
FITS header, and add it if it is not.

For example, to add ’RESVEL 6.6’ to a fits header in a file example.fits,

./hedit

Filename, variable, value, action?

example.fits RESVEL 6.6 u

77

B Rebinning and combining spectra

B.1 Error estimates

We assume that in each raw data channel i we have a signal fi with a Gaussian dis-
tributed error ei. We wish to rebin the data on to a new channel set, and assign weights
accordingly. We suppose that the initial data bins are contiguous, and for the final ones
this is also true - the example we have in mind is rebinning spectrscopic data on to a
uniform wavelength or velocity scale.

If the original chosen bin i is such that some fraction of it wij falls in to the jth bin in
the rebinned data, then it adds wijfi to bin j2. Hence

∑

j

wij = 1, and we are conserving

the total signal in the entire spectrum with this scheme.

The total signal in bin j is
Fj =

∑

i

wijfi (1)

We know that If the independent variates xi (i = 1, ..., n) are normally distributed

with means ai and variances σ2
i , the variate

∑

cixi is normally distributed with mean
∑

ciai and variance
∑

c2iσ
2
i . (e.g. Weatherburn, C. E., A First Course in Mathematical

Statistics CUP, 1968, p58.). Hence the variance in

Fj =
∑

i

wijfi is
∑

i

w2
ije

2
i (2)

We can of course normalize this to anything we want - flux per wavelength bin, unit
velocity ... by setting

Gj =
Fj

Bj

±

√

∑

iw
2
ije

2
i

Bj

(3)

where Bj is the width of each j-bin. The Bj can also be divided by the exposure time
or any other constant obviously.

The error estimate
∑

iw
2
ije

2
i provides an estimate of the expected deviation per pixel,

but if we take n pixels and sum exactly into N new pixels then the total signal-to-noise
ratio in the original pixellation is

n
∑

i=1
fi

√

n
∑

i=1
e2i

(4)

2Note that this weighting assumes that the flux within a pixel is distributed uniformly across the

pixel. This is unlikely to be true in cases of interest i.e. where there is a spectral feature. However it is

not obvious how to get around it - you’d need to model the spectrum which you have not formed yet,

and so presumably know little about! A consequence of this incorrect sub-pixel weighting is likely to be

small wavelength shifts relative to the true values in the rebinned data.

78

and in the new pixellation it is

N
∑

j=1
Fj

√

N
∑

j=1

n
∑

i=1
w2
ije

2
i

=

n
∑

i=1
fi

√

N
∑

j=1

n
∑

i=1
w2
ije

2
i

. (5)

We can interchange the order of summation so the new pixel total S/N is then

n
∑

i=1
fi

n
∑

i=1
e2i

N
∑

j=1
w2
ij

(6)

Now each wij ≤ 1, so
N
∑

j=1
w2
ij ≤

N
∑

j=1
wij , and so in general the total S/N estimate for the

repixellated spectrum is higher than in the original data. This is not what we want if
we want to maintain overall S/N in the data.

The requirement that the total S/N is the same over this range of pixels in either pixel
scheme then becomes a requirement that

n
∑

i=1

e2i =
N
∑

j=1

n
∑

i=1

bije
2
i (7)

where the bij are weights on the variances which we have to determine. Switching the
summation order this becomes

n
∑

i=1

e2i =
n
∑

i=1

e2i

N
∑

j=1

bij (8)

which can be satisfied for any n only if
N
∑

j=1
bij = 1. But this, for any N (or n) is exactly

the condition we had on
∑

j

wij , so this means that to maintain S/N over numbers of

pixels we should have Fj =
∑

i

wijfi with an error estimate Sj given by

S2
j =

∑

i

wije
2
i . (9)

So, in summary, for maintaining overall S/N, use

Fj ± Sj =
∑

i

wijfi ±
√

∑

i

wije2i , (10)

and for pixel-to-pixel fluctuations (e.g. which you would use in minimizing χ2 =
∑

j

(Fj−

modelj)
2/error2j) use

Fj ± Ej =
∑

i

wijfi ±
√

∑

i

w2
ije

2
i . (11)

79

Note that for summing different spectra using inverse variance weighting equation (10)
should be used. Equation (11) if used overweights regions where the old and new pixels
mesh badly. Then, for data normalized to the same scale, use inverse variance weighting
when the variance= S2

j for each set, i.e. for k as a label for each different spectrum

Fj =

∑

k

Fk
j

(Sk
j
)2

∑

k

1
(Sk

j
)2

(12)

and variance S2
j is given by

1

S2
j

=
∑

k

1

(Sk
j)

2
(13)

where (Sk
j)

2 is the population variance for the jth channel in the kth spectrum. This is
slightly different from the estimate of the variance based on the data. The next section
explores this a bit further.

The fluctuations follow a normal distribution, so we can use the combination result to
get final fluctuations

E2
j =

∑

k

(

Ek
j

(Sk
j
)2

)2

(

∑

k

1
(Sk

j
)2

)2 (14)

While these fluctuation estimates are correlated in rebinned spectrum, they do represent
the expected values of the fluctuations in the data, so these are the appropriate quantities
to use for the errors ei when forming χ2 = Σ(di − fi)

2/e2i , where di is the data and fi
the fit at pixel i.

(As a check, in the unrebinned case Ek
j = Sk

j , and then the last equation becomes

E2
j = 1

∑

k

1

(Sk
j
)2

, which is correct.)

B.2 Biases in combined datasets

If we have a sample of k observations all drawn from the same population, with mean
m and (Gaussian) error for the ith sampling σi, then for each observation we will have
a value m+ ǫi, where ǫi is distributed as

1√
2πσi

exp

(

− ǫ2i
2σ2

i

)

(15)

Since neither m or σi are known, these are estimated from the data, with the data value
di taken as an estimator for m, and the variance

s2i ≈ Ai × di +Bi (16)

where Ai is a scalefactor and Bi allows for additional noise contributions e.g. from sky
or detector readout.

80

In combining the data to estimate m we take

D =

k
∑

i=1
widi

k
∑

i=1
wi

(17)

where wi are the weights for each estimate.

To maximize the resultant signal-to-noise, then an appropriate weight is the inverse
variance 1

σ2
i

, so

D =

k
∑

i=1

di
σ2
i

k
∑

i=1

1
σ2
i

(18)

That is fine, but we don’t know σi, and an obvious way to proceed is to estimate it using
the si values from the relation above. Unfortunately this provides a biased estimate for
both D and the variance in D. Rather than attempt to show this in full generality, we
take a simple example which is related at least to the way we sum data for an individual
channel from several exposures.

We suppose that we expect n photons in a single observation, and take k of them. then,
using inverse variance estimate weighting scheme, we maximize the signal-to-noise ratio
by forming

D =

k
∑

i=1

di
s2
i

k
∑

i=1

1
s2
i

(19)

where (if there is no background noise component) we can take

si =
√

di (20)

Then D becomes

D =
k

k
∑

i=1

1
di

(21)

To see what is going on, set
di = n+ ǫi (22)

where ǫi is normally distributed about zero with variance n. Then

D =
k

k
∑

i=1

1
n+ǫi

(23)

i.e.

D =
k

k
∑

i=1

1
n(1+

ǫi
n
)

(24)

81

or

D =
nk

k
∑

i=1

1
1+

ǫi
n

. (25)

Now
1

1 + ǫi
n

= 1− ǫi
n
+

(

ǫi
n

)2

− ... (26)

so

D =
n

1− 1
kn

k
∑

i=1
ǫi +

1
kn2

k
∑

i=1
ǫ2i − ...

(27)

= n

1 +
1

kn

k
∑

i=1

ǫi −
1

kn2

k
∑

i=1

ǫ2i +

(

1

kn

k
∑

i=1

ǫi

)2

...

 (28)

We take each of these summation terms in turn, and ignore higher order terms. Generally
those with odd powers will average to zero, and even powers contributeto higher orders
of 1

n
.

•
k
∑

i=1
ǫi has an expectation value zero and variance kσ2, so 1

kn

k
∑

i=1
ǫi has mean zero

and 1σ deviation 1√
kn

.

• The next term looks like the sum of variances, so an estimator for
k
∑

i=1
ǫ2i is kσ2 =

kn.

• The quantity

(

k
∑

i=1
ǫi

)2

can be estimated using the fact that the distribution of

k
∑

i=1
ǫi is a Gaussian with mean zero and variance kn, so for a variable x and

ν =
√
kn the distribution is

p(x)dx =
1√
2πν

exp

(

− x2

2ν2

)

dx (29)

Setting y = x2 this becomes, for y ∈ [0,∞]

p(y)dy =
2√
2πν

exp

(

− y

2ν2

)

1

2
√
y
dy (30)

where the extra 2 appears because x can be negative or positive for a given y.

Therefore

〈y〉 = 1√
2πν

∫ ∞

0
exp

(

− y

2ν2

)√
ydy (31)

82

or setting 2ν2z = y this is

〈y〉 = 2ν2√
π

∫ ∞

0
e−z

√
zdz (32)

=
2ν2√
π
Γ

(

3

2

)

(33)

Now Γ(32) =
1
2Γ(

1
2), and Γ(12) =

√
π, so

〈y〉 = ν2 = kn (34)

So the the corresponding term will on average be 1
kn

.

Bringing all these together the result is

〈D〉 = n

(

1 + 0− 1

n
+

1

kn

)

(35)

i.e.

〈D〉 = n−
(

1− 1

k

)

(36)

So 〈D〉 is a biased estimator for the true counts n. And, unfortunately, the relative bias
depends on the signal-to-noise ratio

√
n (though in this example the absolute bias does

not).

This general result is known by optimal extraction people (e.g. Horne K., PASP, 98, 609,
1986; Marsh T. R., PASP, 101, 1032, 1989) and is the reason they effectively smooth
the weights when adding into the overall profile.

For combining spectra (or anything) we need a better estimate of the relative local
sigmas to provide the appropriate weights.

B.3 Suitable weights for combining spectra

The error estimates Sj used in equations (12), (13) and (14) need to be based on esti-
mates for the population values, and we have seen that single pixel estimates bias the
data. The error ratios between spectra are likely to be smooth functions, depending
primarily on blaze functions, camera functions, detector response and atmospheric ex-
tinction, most of which can be taken as varying slowly with wavelength over the scales
of interest. Atmospheric absorption (and emission) can present problems, but if the
airmasses are similar we might, to first order, expect that their contributions will mimic
absorption lines (except where the heliocentric correction moves them in one spectrum
relative to another).

With this in mind, can construct a median or mean or fitted variance for each spectrum,
and try using those as weights. It may not matter much which is used, since all we need
is something which

• scales with the variance in the same way between spectra, and

• is not biased by single pixel small fluctuations.

83

Then if we set weight ukj = 1

〈(Sk
j
)2〉 , where 〈〉 is some average/median/fit over several j

pixels evaluated at j, we can form a combined spectrum by using

F ′
j =

∑

k

ukjFj

∑

k

ukj
. (37)

Then, using equation (2) with wjk = ukj /
∑

k

ukj , the variance is

(

S ′
j

)2
=

∑

k

(ukjS
k
j)

2

(

∑

k

ukj

)2 (38)

and fluctuations

(

E ′
j

)2
=

∑

k

(ukjE
k
j)

2

(

∑

k

ukj

)2 (39)

Again as a sanity check setting ukj = 1
(Sk

j
)2
, the individual pixel values, gives the answers

we had in equations (12), (13) and (14).

The only thing left to worry about is which form one should use for ukj . Effectively we
want a (relatively) unbiased quantity which scales as the local variance in the same way
between spectra, and almost any scheme which results in some estimate based on the
local properties over a range of pixels will do. You may wind up with something which
is a little less than optimum in a S/N sense, but it will be less biased.

B.4 Wavelength bias

In a footnote in section B.1 we noted a possible bias in wavelength estimates caused by
rebinning. We return to this question using an illustrative example (we hope) based on
an unrealistic absorption profile which is simple enough to see what is happening. We
choose one which is just a triangle, so the flux f is unity for x ≤ 0 and x ≥ 1, and in
the range [0,1) f = 1− x. Then the mean wavelength

λ =

∫ 1
0 x(1− f)dx
∫ 1
0 (1− f)dx

=

∫ 1
0 x2dx
∫ 1
0 xdx

=
2

3
.

If we choose, for example, to record this profile in 3 data pixels xi = [0, 1/3), [1/3, 2/3), [2/3, 1),
then these pixels are centered on xi = 1/6, 3/6 & 5/6, with di = 1 − fi values of 1/6,
3/6 & 5/6. Then if we determine the wavelength by

λ′ =

∑

xidi
∑

di
=

35

36
/
9

6
=

35

36
× 2

3
= 0.6481.

What is happening is clear - the centre of the pixel is being taken as the mean position
for the line depth, while it should be further along because of the line shape. Things

84

obviously improve if you take a finer pixellation. Using five, for example, with xi(= di) =
0.1, 0.3, 0.5, 0.7 & 0.9 the result is 99

100 × 2
3 = 0.660

So for this profile just recording the data gives a wavelenth bias if we use the central
pixel wavelength as the appropriate one for the data in that pixel.

Now what happens if we take the data which was in three pixels, and rebin that to a
five pixel set using the prescription in section B.1? The new values of the line depths
dpi at each xi are (expressed as fractions)

xi dpi
1/10 3/18
3/10 5/18
5/10 9/18
7/10 13/18
9/10 15/18

The mean wavelength is now

λp =

(

3 + 15 + 45 + 91 + 135

180

)

/

(

1 + 3 + 5 + 7 + 9

10

)

=
289

450
= 0.6422,

so we have added a further bias to the wavelength estimate.

This is a pathological example, but it does illustrate what may happen if e.g we have an
asymmetric profile, which could arise, for example, by a blend of symmetric ones where
there is a redshift - column density correlation. For the intrinsic shift problem it is a
matter of modelling the profile correctly, and VPFIT (version 9.0 onwards) allows you
to do this by computing the profiles at a finer level than the pixel size (see section 10).
You can subsample a profile as far as you like - the cost is only in computing time and
array space.

This does, of course, assume that the wavelength scale has been correctly determined
from the comparison arc lines or whatever. In particular the comparison line positions
are determined by suitably integrating the model profile which falls within each pixel in
determining the centroid position. You should look at the documentation for whatever
wavelength calibration package you use - if you are lucky it may tell you what is done,
and if you are even luckier it may do it accurately.

For rebinning the data the solution is less clear. If the profile is symmetric, and centered
either on the middle of a new pixel or the edge of one, then symmetry arguments
show that there will be no wavelength shift. However if the new pixellation centers fall
somewhere else there may be a shift. As an example the profile

996.0 1.0

997.0 1.0

998.0 1.0

999.0 1.0

1000.0 1.0

1001.0 0.875

1002.0 0.625

1003.0 0.375

1004.0 0.125

85

1005.0 0.125

1006.0 0.375

1007.0 0.625

1008.0 0.875

1009.0 1.0

1010.0 1.0

1011.0 1.0

1012.0 1.0

1013.0 1.0

which clearly has a centroid at 1004.50, was mapped onto pixels of width 0.85 in these
wavelength units, with starting wavelength 997.75. The result is

1000. 1.0

1000.85 0.886029412

1001.7 0.691176471

1002.55 0.485294118

1003.4 0.279411765

1004.25 0.125

1005.1 0.132352941

1005.95 0.375

1006.8 0.588235294

1007.65 0.794117647

1008.5 0.9375

1009.35 1.0

which gives a mean wavelength of 1004.495039, i.e. a shift of 0.005 of the original pixel
size.

The only lesson I can derive from this is - don’t rebin the spectrum. This may mean
you have to deal with each exposure individually (which brings some problems with
continuum level matching) if you want wavelength accuracy.

86

Index

Adding ions, 25
Adding Lyα, 25
Ancillary programs

HEDIT, 77
Atomic data, 52

extra parameters, 56
file format, 52
special ions, 52
continuum adjustment, 54
unidentified lines, 53
velocity shifts, 53
zero level adjustment, 55

Changing component structure, 25
Column densities

summed, 47
tied ratios, 49

Combined spectra
biases, 80
weights, 83

Continuum, 7
Continuum adjustment, 54
Cumulative line lists, 75

Damping wings
lines outside regions, 31

Data, 11
adjusting errors, 11
rescaling in VPFIT, 11

bad pixels, 12
Displaying fits, 41
Download source, 5
Dropping systems, 31

Environment variables, 13
ATOMDIR, 52
plot options, 13
VPFSETUP, 29

File-based startup, 23
Fine structure constant, 26

region velocity precision, 27
requirements, 27

FITS header

CONTFILE, 7
editing, 77
RMSFILE, 8
SCLFILE, 11
SIGFILE, 7
wavelength coefficients, 9
WAVFILE, 8

Fitted profiles
ASCII output, 42

Fitting data
file-based startup, 23
multiple wavelength regions, 19
single wavelength region, 13

Fitting simulated data, 57
multiple wavelength regions, 62
multiple ions, 63
single ions, 62

single region, single file, 60
single wavelength region, 57

Fixed parameters, 44
Fourth variable

fine structure constant, 26

Including previous fits, 26
Interactive startup, 13

multiple regions, 19
parameter estimation, 16
setting wavelength regions, 15
single wavelength region, 13

Internal variables, 33

Libraries
CFITSIO, 5
PGPLOT, 5

Lyα fitting, 74
Lyα forest, 74
Lyman series fitting, 74

Optional parameters, 24
Output, 39

screen, 39
summary file, 40

Parameter estimates

87

reliability, 50
Parameter file

initial values, 23
Parameter limits, 30

dropping systems, 31
maximum column density, 31
maximum Doppler, 30
minimum column density, 30
minimum Doppler, 30

Plot options
reset default colours, 13

Plotting fits, 41
Program parameters

adding ions, 25
including previous fits, 26
removing unnecessary ions, 25

Rebinned data
estimating χ2, 80

Region velocity shifts, 53
Removing unnecessary ions, 25
Resolution, 34

ASCII data, 9
header
file pointer, 34
value, 34

not specified, 38
over-ride, 37
pixel instrument profile, 35
polynomial fit, 35
table, 34

Setup parameters, 29
file, 29
guess line, 33
internal fix flag, 32
internal variable scaling, 33
parameter limits, 30
progress monitor, 32
stopping criteria, 32

Simulated spectra, 57
Spectral data, 7

ASCII
resolution, 9

ASCII format, 9
continuum, 7
error estimates, 7

theory, 78
FITS format, 7
FITS header, 9
wavelengths, 8

Startup from file, 23
Stopping criteria, 32
Summed column densities, 47
Summed spectra

weights, 80

Temperature estimation, 46
Tied parameters, 44

Doppler parameters, 44
redshifts, 44
special cases, 29, 46

Unidentified lines, 25

VPFIT, 64

Wavelength bias, 84
Wavelengths, 8
Weights for summing spectra, 80

Zero level adjustment, 55
setting limits, 31

88

