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Global Astrometry with Gaia
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• Small field astrometry can be very accurate, even more than Gaia

­ but it cannot be used to relate fields at large angular distance

• How to eliminate the systematic distortions at large angle ?

­ One needs to have direct and numerous connections between sources at 

large angular separations

•in a small field the distortions are not seen,  as they are constant over the frame 

size

•in a very very large field, or in two connected fields, the possible distortions are 

different in each field and are included in the model

• To produce a full-sky frame, observations of many sources, in many 

directions must be processed together

­ the astrometry is then global

What is global in global astrometry ?
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• If one knew perfectly the rotational motion of the platform, it is 
possible to map the sky from local measurements

• If one knew where the stars are, it is possible to monitor the attitude 
of the spacecraft from local measurements

• With Gaia, one knows neither in advance and one determines both
from local measurements !
­ in fact almost both,  6 frame orientation parameters are free

• Keyword : Connectivity between sources  + smooth attitude

The Gaia conundrum

Assume your are on board of a spinning spaceship to do astrometric observations
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Global Iterative Solution
• Gaia observes transit times of point sources across fiducial lines on 

the detector
­ there are 9 observations per transit on the astrometric FOV

­ this crossing is that of the image centre relative to CCD

­ the local astrometric centring accuracy is about 200 µas at G =15
•this is 1/300 of a pixel size along-scan

•achievable with the ~ 40,000 counts over 4.5 s of integration

­ there are on the average 700 such measurements per star

typical image sample at G = 15
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Astrometric Core Solution

• Central Problem:

­ For each of 109 observed celestial objects we want to determine six 

astrophysical parameters:

• Position on celestial sphere: α,δ

• Parallax (distance): π

• Proper motion: μα, μδ

• Radial velocity: vR

­ at the µas level (π: <25µas@V=15, <7µas@V<10)

­ using (in theory) no a priori knowledge of these quantities but derive 

them from observation data alone in a self-consistent manner
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Astrometric Core Solution

• Each observed object entering the FOV transits 9 AF CCDs 

­ 9 elemental observations per object per field transit

­ one observation: a CCD centroid of the image in pixel units

• ~109 objects in total

• In 5 years we will have ~80 FOV transits per sources

­ 1011 transits

­ 1012 elementary data

1 trillion observations
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Astrometric Core Solution

• Need to determine  >  5 x 1 billion unknowns

from the 1012 observations using an observation model that 

incorporates

­ Satellite attitude 40 x 106 unknowns

­ Calibration parameters 1 million unknowns

­ Global astrophysical parameters ~ 10

• Could set up a system of equations that solves directly for the 

unknowns – system is manifold over-determined

• Observation model not too complex

• Problem: Connectivity of the parameters
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Observational equations

• The transit time of a given star can be predicted from:
­ the star astrometric parameters

­ the attitude of the satellite

­ the orbit of Gaia in barycentric frame

­ the imaging properties of the telescopes, the basic angle 
between the two fields,  a scale factor to link length and angles, 
the geometry of the CCD mosaic

­ the relationship between on-board clock ticking and TCB

­ few general parameters applicable to all stars
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Predicting model

• Basic direct model

),,,,( tkjialk EGCASFt =

index of observation

along-scan

source ID

δα μμϖδα ,,,,
quaternion 
index

calibration data

global parameters

ephemeris

1887.6355353937   2855 Bastian 1  18.77  0.01609   3 571

490.791788164049   42404410497373876  490.791928426528   42404422616052008 2015-03-03T15:15:10.258027911

5.093826158 -0.495660889   291.8547404   -28.3992770 0.38392   0.03785   -5.20   13.17  109.66  254.9

• Example (for a minor planet)
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Observation equation
• Linearization about the provisional values
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• One solves for a subset of well-behaved stars
­ several 107, up to 100 millions

• Typically at mission end
­ 500 millions unknowns for stars

­ 20 to 40 millions for attitude 

­ 1 million for instrument

­ 100 for general parameters

• Global problem with dense interconnections
­ direct solution not feasible with current means
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Block solution

• Key: relax the connectivity issue

ε++++= GCASRFull problem:

known unknown

If one knows attitude, instrument … then ε+=−−− SGCAR 108 small problems

If one knows stars, instrument … then ε+=−−− AGCSR 107 small problems 

ε+=−−− CGASR

ε+=−−− GCASR
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Astrometry: Block Iterative System

GIS

S

CA

G
• new data (IDT)

• Improved old data (IDU)

• improved selection
of primaries

inner iteration
(non-linearity,
outliers)

GIS iteration
(S-A-C-G
cross-terms)

outer iteration
(interaction
with all other
processes)
Every 6 months

S =  Sources
A =  Attitude
C =  Calibration
G =  System, relativity
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bxK =Δ⋅

calibration 
(~106)

Filled

Sparse

Zeroes

s1s2s3 ...          a1 a2 a3 ...         c

source             attitude        calibration 

source 
(5·108)

attitude 
(4·107)

N =

the non-zero
elements here
connect the 
s, a, c 
parameters
and make the
system hard 
to solve

one 
5×5 matrix 
per source

one band 
matrix per 

attitude
interval

one matrix per cal. unit

[C-A]

[A-C]

[S-C][S-A]

Credit: U. Lammers
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Sky distribution – Positions (~ 2016.5)

• Plots for G =15, but scalable to other magnitudes

as* μσα −

asμσδ −

as21* μσα =><

as18μσδ =><

Equatorial coordinates
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Sky distribution – Parallaxes

as25μσϖ =><
asμσϖ −

• Plot  for G =15, but scalable to other magnitudes

Equatorial coordinates
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Sky distribution – Proper motions

• Plots for G =15, but scalable to other magnitudes

-1* yr asμσ
αμ −

-1yr asμσ
δμ −

-1* yr as15μσ
αμ =><

-1yr as13μσ
δμ =><

Equatorial coordinates
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The maths behind the link

infinitesimal rotations
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Infinitesimal rotations I
• Local frame
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Infinitesimal rotations II
• Rotation ω

ω

(passive form)
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Infinitesimal rotations III

• Relationship between two frames related by a small, static rotation

­ correspondence between two catalogues of the same sources given in each frame

­ one can use the matrix to rotate one catalogue from one frame to the other
• ω is known

­ one can use the matrix as condition equations to derive  ω

• the  (Δα cosδ, Δδ)i are known

(passive form)
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Infinitesimal rotations IV
• Non static form

­ rotation

with  two catalogue or two frames
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Infinitesimal rotations IV
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and by identification:

the transformation reads:
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Application to Gaia alignment and spin I

• Two sets of coordinates of the same sources
­ one from Gaia

­ one from a reference catalogue
•ICRF2 for the orientation,  QSO catalogue for the spin

­ if the differences can be approximated by a time dependant rotation, for 
each source one has,
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• Solution for Ω and ε with least-squares
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Application to Gaia alignment and spin II

• The normal matrix depends only on the source distribution 
and accuracy ( ~ magnitude)
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• With a relatively uniform distribution in each bin of magnitude

­ the normal matrix is nearly diagonal
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Offset between radio and optics

• Light and radio emission centers could be different
­ there is at the moment no real evidence below ~ 10 mas level

­ physically with QSO models one has good reasons to assume there is an 
offset

•how big is an open question 
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• The offset vector O is probably of random nature from source to 
source
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Making Gaia frame inertial

principles

performances
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Performance on the spin determination

• Assumption
­ the only source of transverse motion in the Gaia solution comes 

from the free spin

• Material
­ LQAC known sources  ( 150,000 sources  G< 20)

­ Gaia simulated QSO catalogue  (550,000 sources G < 20)

• Model fitting
­ A global spin ω (ωx ωy ωz ) on the QSO proper motions of the Gaia  

unrotated frame

­ the covariance matrix is computed for each bin of magnitude

• Application
­ all proper motion (stars, QSOs) are corrected for this spin 

pattern
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Transverse motions

• So far no systematic transverse motion detected
­ QSOs have fixed comoving coordinates

• If Vt ~  H0 D    µ  ~  10 µas/yr
­ VLBI  in 20 yrs with σpos ~ 1 mas  µ  < 50 µas

­ but sub-mas  structure instabilities  (P. Charlot, 2003)

• Other sources :
­ microlensing   P  = 10-6 (Belokurov)  only a handful

­ matter ejection, superluminous motion 

­ Variable galactic aberration

­ Macrolensing  P = 10-2 (Mignard, 2003) long timescale

­ Accelerated motion in the local group

­ binary QSOs ?
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Astrometric Accuracy: QSOs
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jitter : 20 µas/yrjitter  50 µas/yr

Performance with LQAC

• Spin covariance matrix computed when QSOs are constrained 
to have no overall motion

• The plot shows the standard error in ω
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Performance with simulated QSO catalogue
• Spin covariance matrix computed when QSOs are constrained 

to have no overall motion

• The plot shows the standard error in ω
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Quite Challenging

We aim at a final result on the reference frame and the 
acceleration at 0.3 µas/yr level:

This is  1/1000 of  the astrometric 
accuracy of the faintest sources



Santiago,  3/10/2014 - F. Mignard87

Dipolar acceleration

description

parameter fitting

A CRF with an Epoch ?
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Galactic Aberration

• The solar system is in motion in the Galaxy,  V ~ 220 km s-1

­ constant aberration of ~ 250" for the QSO wrt to comoving frame

­ not detectable (principle of relativity)

­ δu = v/c

• But the solar motion is not uniform
­ ~ circular motion

­ radius  R ~ 8.5 kpc  and period 250x106 yrs

­ the aberration is then variable 

­ one sees a very small arc on the aberration ellipse

yras
cR
V

cdt
d /4)( 2

μδδμ ≈===
Γu

250"
Galactic aberration

over  250x106 years
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galactic centre

Secular Drift on QSOs
• Plot in equatorial coordinates

­ amplitude  ~ 4 µas/yr
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General Case : detail 

• For any acceleration of the SS wrt Quasars :
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• Equations similar to global rotation.
• Precision  of ~ 0.3 µas/an  (2 prad/yr) on Γ/c   

= 0.2x 10-10 m s-2 (γ Pionner/40)
• Galactic rotation (µ ~ 4 µas/yr)
• Acceleration of the Local Group CDM ?
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Rotation vs. Acceleration
• The two fields are globally orthogonal on the sphere
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• If a and Ω are parallel, then local orthogonality

• Otherwise

• Orhogonal only on the average on the sphere
­ therefore, one must solve simultaneously for both vectors
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Solution with dipole acceleration

• The galactic acceleration entails a systematic transverse motion of 
the QSOs 
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More general patterns on proper motions

• Proper motions seen as a vector field on S2

• Applicable to stars and QSOs

• Expansion in Vector Spherical Harmonics Tlm , Slm
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Will the Gaia-CRF have an Epoch ?
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QSO Proper Motion and Epoch

• The radio ICRF is not associated to an epoch

­ defining QSOs have fixed celestial coordinates
•they are not epoch dependant

­ the define axis direction 'for ever'

­ time is no involved in the process

• A stellar reference frame is defined at a particular epoch

­ defining stars coordinates come with their proper motion

­ the PMs are part of the fundamental catalogue

­ each star comes with a particular PM and its uncertainty
•with N stars, there are 2N parameters  needed 

­ the system degrades due to the limited uncertainty of the PMs
•accuracy in position and annual PM are similar
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QSO Proper Motion and Epoch

• What about the Gaia-CRF
­ QSOs have a systematic proper motion of ~ 4 muas/yr

­ But these are not individual PM, but the result of a systematic 
pattern

•only 3 parameters are required to maintain the system

•the accuracy should be < 0.5 muas/yr

­ Individual positions of the primary sources will have an accuracy of 
~ 80 muas

­ degradation will be very very slow

• Therefore : the Gaia-CRF will have an epoch attached to it
­ but it has very different meaning as for a stellar reference frame

• How to avoid it: take the origin at the galactic centre !
­ this is for the future
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Alignment of the Gaia CRF

principles

performances
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• Orientation is performed by minimizing the distances between 
Gaia positions and ICRF positions of common sources

­ GCRF needs to be aligned to ICRF 

­ we have one infinitesimal rotations to fit(εx, εy, εz)

• ICRF sources are observed by Gaia

­ ~ 1500 G < 20 ,  200 G < 18 - σGaia < 100 µas

­ GCRF can be aligned to QSOs by a rotation

­ accuracy   

Gaia alignment to ICRF

QSOs
stars

as
N

μ
σσ

σ 10
QSO

2
ICRF

2
Gaia

align <
+

≈

ICRF



Santiago,  3/10/2014 - F. Mignard99

ICRF-2 (2009)
σ~ 50 to 150 µas

defining (294) VLBI (923) VLBA Calib. (2197)

σ~ 0.2 to 2 mas σ~ 0.5 to 10 mas
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ICRF-2 in optics

• Relatively faint sources in the visible
­ From ICRF1 B Magnitude given by Veron & Veron-Cetty

• V  ~ 17-21

• No visual magnitude available in the ICRF2 publication
• Cross-matched  of the LQAC with ICRF2

­ For each entry there are between 0 and 7 photometric bands available

#  nom_source        ra          dec         flag_cross    u     b     v     g     r     i   

LQAC_000-032_001 0.084999781 -32.350342643 AB------I-KLM 0.00 18.57 17.00  0.00 17.99 17.86

LQAC_000+040_001  0.221173199  40.900498078 AB-D--------- 0.00  0.00  0.00  0.00  0.00  0.00

LQAC_017-060_001 17.314480025 -60.830127769 AB----------- 0.00  0.00  0.00  0.00  0.00  0.00

• When > 2 bands available, G magnitude can be estimated
­ otherwise use V or R as substitute
­ or systematic shift if only u,b are available

• Out of 3400 ICRF2 sources, I ended up with  2700+ with an estimated G 
magnitude
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ICRF-2 in optics

• Magnitude distribution
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Astrometric Accuracy: QSOs
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Global  Spin and Orientation

• Pattern solved with three parameters (εx, εy, εz)

• same for proper motion with (ωx, ωy, ωz)
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ICRF2 - Defining sources

Performance in the alignment

• based on the covariance matrix of the rotation model

ICRF2 – Def + 2nd sources
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More sources ?
• The number of suitable sources for the alignment may be small

­ stable,  no structure, bright enough in the visible

­ About 200 ICRF2 sources are suitable(Bourda et al., 2012)

• A program of selection and observation of additional sources is 
under way
­ PI : G. Bourda ( Obs. of Bordeaux)

• Initially 450 sources pre-selected
­ Flux > 20 MJy, δ > -10°,  V< 18

­ 400 found detectable in VLBI

• Imaging of 250 sources
­ 120 found without structure

• Astrometric observations of these sources in progress

• We may have > 120 new and high-quality source for the alignment

• ICRF3 will be also an important data set to explore
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Radio-Optic offset

• No observational evidence

­ offset < 0.1 to 1 mas

• Emission model can provide insights

• For a distance of 0.1 pc between  

photocenter and radiocenter angular 

distance > 10 µas ( z > 1, RG involved)

­ becomes relevant for the alignment on 

radio ICRF

­ the offsets vectors should be randomly 

oriented act as an additional noise
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Black 
Hole

Torus of 
Dust

Jet

Accretion 
Disk

AGN unified model
Urry & Padovani (1995)VLBI observation

~ 100 µas
Kovalev et al. 2008

Gaia 
observation

?

Frequencies 
in VLBI:
S ~ 2 GHz

X ~ 8 GHz

K ~ 24 GHz

Ka ~ 32 GHz

Q ~ 43 GHz

credit : G. Bourda, Obs. Bordeaux

Radio-Optical core-shift
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X-band −1st contour level @ 1 − 4%

~10 m
as

GC030 GC034A GC034BC
D

GC034EF

VLBI maps of 'bad sources'

credit : G. Bourda, Obs. Bordeaux
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X-band −1st contour level @ 1 − 4%

~10 m
as

GC030 GC034A GC034BC
D

GC034EF

VLBI maps of 'good sources'

credit : G. Bourda, Obs. Bordeaux
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Gaia: Practical implementation

• No split between rotation and cosmic acceleration

• Orientation must be determined at the same time

­ cosmic proper motions to be included in the ICRF positions

­ they are not known, but can be computed

• Needs to carry out the alignment:

­ small subset of sources with positions in ICRS

•ICRF sources and other observed in VLBI alignment

­ larger subset of EGSs with statistically zero proper motions

•not necessarily observed with VLBI rotation
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Gaia: Practical implementation

• There are 9 reference frame parameters

­ 3 for the orientation εx, εy, εz

­ 3 for the rotation ωx, ωy, ωz

­ 3 for the cosmic acceleration ax, ay, az 

• They are all determined within the astrometric global solution

­ attitude, position, proper motion will be referred to this frame

­ hopefully the ephemeris is given in a frame nearly identical

•however the coupling is weak, and an error of 10 mas is acceptable

• This should be carried out in post-astrometric processing
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