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Zusammenfassung

Diese Arbeit untersucht die statistischen Eigenschaften von weiten Doppelsternsystemen
(WB) im Galaktischen Feld. Mit Separationen von über 200 AU und ihrer folglich geringen
Bindungsenergien, reagieren WB empfindliche auf gravitative Störungen. Dies macht sie zu
einem interessanten Werkzeug, um Rückschlüsse auf die Natur der dunklen Materie (DM)
in unserer Galaxie zu ziehen. Für unsere Studie wählen wir einen knapp 675 Quadratgrad
grossen Himmelsausschnitt in Richtung des nördlichen Galaktischen Pols. Dieser enthählt
etwa 670 000 Hauptreihensterne mit scheinbaren Helligkeiten zwischen 15 und 20.5 mag und
Spektralklassen später als G5. Die Daten stammen vom Sloan Digital Sky Survey. Wir
konstruieren die Zweipunkt Korrelationsfunktion (2PCF) für Winkelseparationen zwischen
2 und 30 Bogensekunden. Das resultierende Signal wird mit Hilfe der Wasserman-Weinberg
Technik modelliert. Wir zeigen, dass die Verteilung der grossen Halbachsen konsistent ist
mit Öpiks Gesetz und leiten ab, dass etwa 10% aller sonnennaher Sterne Mitglied eines
WBs sind. Die 2PCF-Methode ist allerdings stark eingeschränkt durch das von optischen
Paaren verursachte statistische Rauschen; besonders bei den weitesten Systemen, die die
vielversprechensten Rückschlüsse auf die DM zuliessen. Um das Rauschen zu reduzieren
und die Empfindlichkeit unserer Analyse bei grösseren Separationen zu steigern, rechnen
wir Distanzinformationen von photometrischen Parallaxen mit ein. Wir führen ein neuar-
tiges Gewichtungsverfahren ein, das auf der Bindungswahrscheinlichkeit eines gegebenen
Paares beruht. Damit leiten wir die Verteilung der Farben und der Massenverhältnisse
ab, wobei wir Auswahleffekte sorgfältig berücksichtigen. Statistisch wurden etwa 4 000
WBs mit Massen zwischen 0.2 und 0.85 Sonnenmassen in unserer Analyse mit einbezogen.
Wir stellen fest, dass deren Farbverteilung mit jener der Feldeinzelsterne übereinstimmt.
Es scheint jedoch, dass Paare mit einer Massendifferenz von über 0.5 Sonnenmassen ver-
glichen mit einer Zufallspaarung von Feldsternen systematisch unterrepräsentiert sind. Wir
haben eine “Rankliste” von WB-Kandidaten zusammengestellt, die sich für Folgestudien als
nützlich erweisen könnte. Aufgrund fehlender Daten über die relativen Geschwindigkeiten
der Paare, konnte die Einschränkung betreffend der weitesten Systeme nicht vollständig
überwunden werden. Ein weiterer Nachteil unseres Ansatzes ist die Notwendigkeit eines
komplizierten Models, um Auswahleffekten Rechnung zu tragen. Andererseits gelang es uns
die Einschränkungen von Studien, die sich auf die Eigenbewegungen stützen, zu umgehen.
Das neuartige Verfahren, das in der vorliegenden Arbeit vorgestellt wird, kann daher als
zu den Eigenbewegungsstudien komplementär angesehen werden und stellt eine gangbare
Herangehensweise zur Erforschung weiter Doppelsterne dar.
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Abstract

This thesis focuses on the statistical properties of wide binary (WB) star systems in the
Galactic field. With projected separations larger than 200 AU and, consequently, having
very low binding energies, WB are sensitive probes of the Galactic gravitational potential
making them an interesting tool to constrain the dark matter (DM) content in the Milky
Way Galaxy. For the present study we select a homogeneous sample covering about 675
square degrees in the direction of the Northern Galactic Pole. It contains nearly 670 000
main sequence stars with apparent magnitudes between 15 and 20.5 mag and spectral
classes later than G5. The data were taken from the Sloan Digital Sky Survey. We
construct the two-point correlation function (2PCF) for angular separations between 2
and 30 arcseconds. The resulting clustering signal is modeled by means of the Wasserman-
Weinberg technique. We show that the distribution of semi-major axis is consistent with
the canonical Öpik law and infer that about 10% of all stars in the solar neighbourhood
belong to a WB system. The 2PCF method is, however, seriously limited by the noise from
optical pairs, especially for the widest systems, which would provide the most stringent
constraints of the DM’s nature. To reduce the noise from optical pairs and to increase
the sensitivity of the analysis at larger separations, we include distance information from
photometric parallaxes. Introducing a novel weighting procedure based on the binding
probability of a double star, we infer the distribution of colours and mass ratios, which
were carefully corrected for observational selection effects. About 4 000 WBs were taken
into account statistically, whose components have masses between 0.2 and 0.85 solar masses.
We find that the WB colour distribution is in accord with the colour distribution of single
field stars. However, pairs with a mass difference exceeding 0.5 solar masses seem to
be systematically underrepresented as compared to a random pairing of field stars. Our
results are broadly in agreement with prior studies but a direct comparison is often difficult
or even impossible. We compiled a ‘ranked list’ of WB candidates that will prove to be
useful for follow-up studies. Due to lack of information about the relative velocities of the
pairs, the limitation concerning the widest pairs could not be entirely overcome. A further
drawback of our approach is clearly the need for a sophisticated modeling to allow for
selection effects. The method, however, successfully circumvents the limitations of studies
based on proper motions. The novel procedure presented in this thesis can therefore be
regarded as complementary to common proper motion studies, and constitutes a viable
approach to study the statistical properties of WBs in the Galactic field.
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Preface

During the past four years I was lucky enough to live an ideal of scientific work that
nowadays, I think, is becoming rare. The humanistic tradition of the city of Basel is
still noticeable at the oldest university of Switzerland. Free from economic and political
interests, far from career planning and – thanks to the Swiss National Science Foundation
– without major financial worries, I had the privilege to be able to fully concentrate on
research. I cannot say precisely what has motivated me to start a doctorate in astronomy.
Maybe it was the fascination for this field and my interest in all kinds of natural phenomena
that had been accompanying me since childhood. Maybe it was the deep sympathy towards
my doctoral advisor Prof. Dr. Bruno Binggeli, or perhaps also the sublime coming from
the starry sky and the seemingly endless expanse of the Universe that strikes me with deep
reverence.

That I have emphasised here the universities’ independency should not be interpreted
as a lack of interest or even a negative attitude towards worldly matters. A long-term
stable economic and political situation is certainly a prerequisite to make fundamental
research possible and to enable a variegated education at the universities. At the same
time I think that, to make the full scientific potential available, it is necessary that the
highest possible academic freedom is guaranteed. The setting of educational priorities holds
the danger of the impoverishment of higher education and is connected to a reduction of
professional diversity, penalising those disciplines that by nature are less determined to
produce marketable products in the short run, and to yield a foreseeable financial profit.
I am sorry that the former Astronomical Institute of the University of Basel could not
withstand these reforms and was forced to close its doors.

Apart from this sad episode, I could not have wished better conditions for my doctoral
studies, and this is mainly to ascribe to Prof. Binggeli. From the beginning he encouraged
me to choose a broad approach to astronomy and indicated the multitude of interdepen-
dencies among the various scientific branches. At any time I could resort to Prof. Binggelis
experience and knowledge; he never put me under pressure to progress more quickly or to
publish extensively. It was the research quality and the scientific integrity that stood to
the fore. I would like to thank Prof. Binggeli for the time he devoted to me, for the count-
less fascinating conversations that often went far beyond astronomy, and for his warmth
and cordiality. Thanks also to the external assessor, Dr Jean-Louis Halbwachs from the
Observatoire de Strasbourg, who immediately showed interest in my work and agreed to
be the second examiner.
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Over the last four years I have pursued not only science, but – perhaps more impor-
tantly – I have learned something about science. My principal lesson in this regard was
an apparently trivial insight: that science is made by human beings. Before I began the
doctorate, I had a romantic, almost puristic idea of science as something completely dis-
connected from the human, idealistic enterprise aimed at discovering a hidden, absolute
truth about nature. Scientific operations, however, do reflect human nature with all its
strengths and weaknesses, its ups and downs. Whether the laws of nature themselves exist
independently from the observer, I would not dare to judge. Yet the whole process of
discovery of natural laws and their formulation is made by human beings. This insight has
not diminished my opinion of science at all. Perhaps this even constitutes the much sought
spiral staircase leading out of the ivory tower.

Many people have participated in the development of this work with stimulating dis-
cussions and advice, constructive criticism and encouraging words, or simply with relaxing
chats about everything under the Sun. Many thanks to Karin Ammon, Andreas Aste,
Selçuk Bilir, Christoph Bruder, Roland Buser, Heinz Breitenstein, Daniel Cerrito, Isabelle
Cherchneff, Stefano Chesi, Didier Curty, François Erkadoo, Jan Fischer, Tobias Fischer,
Urs Frischkecht, Peter M. Garnavich, Alfred Gautschy, Kuno Glanzmann, Katharina Glatt,
Beat Glatz, Eva K. Grebel, Bernd Heimann, Kai Hencken, Helmut Jerjen, Katrin Jordi,
Jürg Jourdan, Astrid Kalt, Barbara Kammermann, Roger Käppeli, Salih Karaali, Stefan
Kautsch, Andrea Kayser, Ralf Klessen, Andreas Koch, Bernd Krusche, Thijs Kouwen-
hoven, Matthias Liebendörfer, Thorsten Lisker, Wolfgang Löffler, Phani Peddibhotla, Al-
bino Perego, Damien Quinn, Thomas Rauscher, Peter Reimann, Beat Röthlisberger, Ni-
ranjan Sambhus, Simon Scheidegger, Ingo Sick, Michael Steinacher, Roland Steiner, Gus-
tav A. Tammann, Karl-Friedrich Thielemann, Dirk Trautmann, Mircea Trief, Cyrill von
Arx, Kevin van Hoogdalem, Pieter Westera, Stuart Whitehouse, Alex Willand, Christian
Winteler, Tobias Zesiger und Tobias Zingg.

I sincerely thank Nicole Peduzzi, who was always with me and supported me in difficult
moments. Her countless tips and suggestions can be found at any point in this work and
the careful proofreading of the entire manuscript is of inestimable value. I dedicated this
work to her. Many thanks also to Alida, Dante and Stefano Peduzzi, for their warmth
and hospitality. A significant part of this work has been written at their house in Cama
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Chapter 1

Introduction and motivation

1.1 Historical sketch of double stars

“It’s one of the beautiful things in the sky and I don’t believe that in our pursuit one could
desire better”, remarked Benedetto Castelli (1578–1643) in a letter1 sent to his friend and
former teacher Galileo Galilei (1564–1642) on January 7, 1617. Castelli did not explain
their “pursuit” more in detail in that letter – for good reasons: Only one year before, early
in 1616, the Pope Paul V. declared that the Copernican doctrine was contrary to the Bible.
Galilei received the papal order not to “hold or defend” the idea that the Earth moves and
the Sun stands still at the centre. But in fact, the “pursuit” of Castelli and Galilei was to
find observational evidence in favour of the Copernican system. They believed that such
evidence may be provided by “one of the beautiful things in the sky”: the double star
Mizar.

Mizar (ζ Ursae Majoris) belongs to the Great Bear constellation, also called the Great
Dipper. It is the middle star of the three located in the bear’s tail. From ancient time it
is known that Mizar has a dimmer companion, Alcor, which is separated from Mizar by
about 12 arcminutes, resolvable to the naked eye under good observing conditions. Mizar
itself consists of two stars, Mizar A and Mizar B, separated by about 14.4 arcseconds, and
resolvable only with the aid of a telescope.

Even if Galilei’s responses to Castelli have not been preserved, it may be concluded
from his observational notes that the double nature of Mizar was the cause for Castelli’s
enthusiasm. Indeed, just one week after Castelli had written to him Galilei pointed his
telescope at Mizar. Galilei wrote a detailed record2 of his observations, where he derived

1Castelli (Pisa) to Galilei (Florence), 7 Jan. 1617, in Le Opere di Galileo Galilei, Edizione Nazionale,
ed. by Antonio Favaro (20 vols., Florence, 1890–1909; hereafter Galilei, Opere), XII, 301 (Letter 1241):
“Desiderarei che V. S. Ecc.ma, concedendoglielo la sanità, una sera desse un’occhiatina a quella stella di
mezo delle tre che sono nella coda dell’Orsa maggiore, perchè è una delle belle cose che sia in cielo, e non
credo che per il nostro servizio si possa desiderar meglio in quelle parti.”

2Galilei, Opere, III, Part II, 877. The record is not dated, but the ecliptical longitude of Earth given by
Galilei corresponds to January 15 and there are good reasons to believe that the year was 1617 (Fedele
1949; Siebert 2005).

1
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an angular separation between Mizar A and B of 15 arcseconds – an excellent result for
that time.

Figure 1.1: Benedetto Castelli (1578–1643)
studied natural sciences in Padua and
later became an abbot at the Benedictine
monastery in Monte Cassino. He was most
likely the first to resolve Mizar (ζ UMa)
with a telescope.

It is nowadays believed that Castelli, and shortly
after him Galilei following Castelli’s suggestion, were
the first to split Mizar with a telescope (Ondra 2004;
Siebert 2006) – the first double star ever resolved
by telescope. Some older double star literature (e.g
Aitken 1964) mistakenly attributes this achievement
to Giambattista Riccioli (1598–1671), the Jesuit as-
tronomer and geographer of Bologna, who briefly
mentioned the double appearance of Mizar in his
Almagestum novum printed in 16513. This miscon-
ception was already noted by Fedele (1949) but he
did not receive much attention, since his article4

was published in Italian in the little-known journal
Coelum of the Bologna Observatory.

But how can a double star like Mizar provide any
evidence in favour of the Copernican world picture?
In a letter5 to Galilei, Ludovico Ramponi (c. 1577–?)
describes a method to measure the annual parallax
using double stars: if the Earth is orbiting around
the Sun, then two stars with very different distances
from Earth should change their relative positions.

This parallactic effect is much easier to measure when the two stars appear close together
in the sky as observed from Earth, forming a so-called optical pair. Double stars of unequal
brightness seemed to be especially suitable, since such pairs were suggesting very different
distances of the two components from Earth.

The detection of the annual parallax may be regarded as the ‘experimentum crucis’
of the cosmological controversy of the 17th century and the failure to observe it had been
one of the most important objections against the motion of Earth (Siebert 2005). Galilei
and Castelli tried to proof that the Earth is moving by measuring the relative parallactic
displacement of close optical pairs. Galilei explained this method later in the Dialogo,
through his alter ego, Salviati, the defender of the Copernican system6.

3Riccioli, Almagestum novum (2 vols., Bologna, 1651), I, 422a (Lib. 6, cap. 9): “. . . adeo ut stella unica
videatur illa, quae media est in cauda Ursae maioris, cum tamen sint duae, ut Telescopium prodidit. . . .”

4A reproduction of Fedele’s article in Italian can be found on Leoš Ondra’s homepage:
http://www.leosondra.cz/en/mizar/fedele/

5Ramponi (Bologna) to Galilei (Florence), 23 July, 1611, in Galilei, Opere, XI, 159–62 (Letter 561).
6Galileo Galilei (1632), Dialogo sopra i due Massimi Sistemi del Mondo Tolemaico e Copernicano, in
Galilei, Opere, VII, 409.
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Even if correct in principle, the reasoning was flawed for two reasons: first, most close
double stars, such as Mizar A and B, are not optical pairs, but true binary systems7, bound
to each other by their mutual gravity. Their different apparent magnitudes – Mizar A has
a magnitude of 2.3 and Mizar B of 4 – misled Castelli and Galilei, who assumed that all
stars have more or less the same brightness, and thought that the two components of Mizar
have very different distances from Earth. But in fact, they are at the same distance from
us and, therefore, there is no relative change in the positions of Mizar A and Mizar B
due to the motion of the Earth around the Sun. Second, unaware of the phenomenon of
diffraction of light, Galilei thought that the observed angular radius of a star corresponds
to its real radius8. Assuming furthermore that Mizar A is as big as the Sun (“si stella
ponatur tam magna ut ⊙”9), Galilei heavily underestimated the distance of Mizar A from
the Earth (he got only 300 AU). Consequently, he overestimated the expected parallactic
displacement. With the resolution of the telescopes used at that time, it was impossible
to observe any parallax - even that of the closest stars10.

Figure 1.2: The Tychonic system created
by Tycho Brahe (1546–1601). The Moon
and the Sun revolve around the Earth,
which stands still at the centre. The other
planets revolve around the Sun. Image
from Siebert (2006).

Castelli and Galilei took it for granted that they
were looking at purely perspective phenomena, stars
that accidentally come to lie close together in the sky.
Real binary and multiple stellar systems seemed to
be contradictory to their conception of the Coper-
nican doctrine. Like Giordano Bruno (1548–1600),
Galilei and Castelli believed that an infinite number
of worlds similar to our exists. According to them,
every star in the sky was a sun like our own, all be-
ing equal in size and supposed to stand still at the
centre of other possible planetary systems. In their
view, only planets, but no stars could revolve around
stars (Siebert 2005, 2006).

In addition, abandoning the traditional idea of
fixed stars in favour of physically associated stellar
systems would undermine Galilei’s method to proof
the Earth’s motion around the Sun, which was ac-
cepted from both sides of the cosmological debate.
An eventually observed change in the relative posi-
tions of two stars must then not be necessarily in-
terpreted as a proof of the Earth’s motion but could
also be attributed to a real orbiting of the one star around the other.

7Nowadays we know from spectroscopic observations that both Mizar A and B consist of two components.
Mizar is, thus, a quadruple system.

8The Airy disk formed by diffraction through a telescope similar to the one used by Galilei has a diameter
of a few arcseconds (Graney and Sipes 2009).

9Galilei, op. cit. (footnote 2).
10The first detection of a stellar parallax succeeded more than two centuries later in 1838 with the obser-

vation of 61 Cygni by the German astronomer and mathematician Friedrich Wilhelm Bessel.
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Figure 1.3: Johann Baptist Cysat (1587–
1657) holding a Jacob’s staff. Born in
Lucerne, he joined the Jesuits in Ingolstadt
where he later became a theology student.
He was the first to write about the percep-
tion of double stars as physically related
systems.

The argument that, if real double stars orbiting
each other exists, the detection of a small variation in
the relative positions of fixed stars might not be the
definite proof in favour of the heliocentric world sys-
tem was well-known to Galilei but he dismissed it as
quibbling. Interestingly, the opponents of Coperni-
cus were more open-minded to the idea of physically
related stellar systems, since in their world picture
the Sun was not the only organising principle. As
noted by Siebert (2005, 2006), supporters of the geo-
heliocentric system by Tycho Brahe (1546–1601),
had less problems imagining stars building systems,
in which the components are orbiting each other. In
Brahe’s system the Moon and Sun are orbiting the
Earth, whereas all other planets revolve around the
Sun (Fig. 1.2). It is mathematically and empirically
– regarding the observed (retrograde) motion of the
planets and the phases of Venus discovered by Galilei
– equivalent to the Copernican system.

One of its supporters was the Swiss Jesuit math-
ematician and astronomer Johann Baptist Cysat
(1587–1657). In his most important work, the Math-
emata astronomica11 printed in 1619, he gives de-

tailed descriptions of one of the earliest telescopic comet observations. Cysat believed to
have seen the fourth comet that appeared in 1618 as a composed celestial body consisting
of many small ‘stars’. To illustrate this bizarre aspect, Cysat compares it to the open
star cluster Praesepe – also called the Beehive Cluster – in the constellation Cancer. The
five brightest stars of the Praesepe cluster resemble, according to Cysat, to the cometary
nucleus he observed. Furthermore, Cysat also compares his comet observations to globular
cluster, multiple stellar systems as well as the systems of Jupiter and Saturn with their
moons. These comparisons suggest that Cysat, contrary to Castelli and Galilei, interpreted
multiple stellar system like Praesepe as stars of different size belonging together in space
– a radically new picture of stars that will be generally accepted only 150 year later.

Galilei was right that the Earth is moving around the Sun but he was wrong in dis-
missing the idea of double stars as physical systems – an idea suggested by the loosers of
the great cosmological debate. Declining the Copernican picture they were considered in
retrospect as opponents of scientific progress. At least in the context of double stars this
thinking appears to be wrong (Siebert 2006).

The term ‘double star’ (‘stella dublex’) in its modern meaning (a ‘star’ that appears
single to the naked eye but double in a telescope) was used for the first time by the Italian

11Johann Baptist Cysat, Mathematica astronomica de loco, motu, magnitudine et causis cometae qui sub

finem anni 1618 et initium anni 1619 in coelo fulsit, Ingolstadt, 1619.
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astronomer and architect Giovan Battista Hodierna (1597–1660) – another supporter of the
Tychonic system. Born in Ragusa, Sicily, Hodierna worked in Palma di Montechiaro near
Agrigento as court scientist of the Duke’s family di Lampedusa12. In his De Systemate13 he
compiled a catalogue of more than 40 objects, including at least 19 nebulous objects such
as stellar clusters and galaxies, where he anticipated a host of observations that should
only appear in the famous catalogues of Charles Messier (1730–1817) and John Louis Emil
Dreyer (1852–1926). Hodierna gives, for example, the earliest known record of the Orion
Nebula – a discovery that was attributed a long time to Christiaan Huygens (1629–1695),
who saw the Orion Nebula in 1656 and published his observations in 1659, five years after
Hodierna.

Figure 1.4: Giovan Battista Hodierna
(1597–1660), born in Ragusa, was an Ital-
ian astronomer at the court of the Duke of
Montechiaro. He published the first list of
13 double stars.

In his book from 1654, Hodierna dedicated for
the first time a whole section14 to the double star
phenomenon. He also gives the first list of double
stars of 13 pairs only resolvable with a telescope.
Like Cysat, Hodierna considered it thoroughly pos-
sible that stars do not only appear close in the sky,
but that they could also be close in space, since they
might well be of different intrinsic size and luminos-
ity.

Most astronomers of the 18th and 19th centuries,
however, had no doubt on the optical nature of the
known double stars, which were consequently re-
garded as mere curiosities. The first well-founded
argument in favour of bound stellar pairs was due to
Reverend John Michell (1724–1793). Michell was an
English natural philosopher and geologist and “one
of the most brilliant and original scientists of his
time” (Soter and deGrasse Tyson 2001). Unfortu-
nately, no portrait of him exists, but a contempo-
rary diarist describes him as “a little short Man, of
a black Complexion, and fat”15.

Michell’s work spanned a wide range of subjects.
He demonstrated that the magnetic force decreases
with the square of the distance (Michell 1750). After the catastrophic earthquake in Lisbon
in 1755, he developed a theory of earthquakes as wave motions in the interior of the Earth
(Michell 1759) and since then is regarded as the father of seismology. Michell invented

12Famous through Giuseppe Tomasi di Lampedusa (1896–1957), author of the Gattopardo.
13Giovan Battista Hodierna, De Systemate Orbis Cometici, Deque Admirandis Coeli Characteribus,

Palermo, 1654.
14The section is entitled: de Stellis Contiguis Duplicibus, seu Geminis, deque Mondani Systematis Coper-

nicaeorum implicantia, ratiocinandum venit. Hodierna, De Systemate, p. 29.
15William Cole, MSS XXXIII, 156, British Library
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the torsion balance16 used by Henry Cavendish (1731–1810) in the famous experiment
where the average density of the Earth was inferred for the first time (Cavendish 1798).
More recently, he has also become famous for anticipating the concept of black holes –
celestial bodies so dense that their escape velocity exceeds the speed of light – in a letter
to Cavedish, where he also pointed out that the existence of such non-luminous objects
might be inferred “if any other luminous bodies should happen to revolve about them”
(Michell 1784, p. 50).

The argument Michell put forward in 1767 in favour of binary stars was of a statistical
nature (Michell 1767). He argued that the probability that a stellar clusters like the
Pleiades were due to a chance alignment was very small17, and that there were far more
double star in the sky as would be expected if the stars were distributed randomly in the
sky. Michell concludes (Michell 1767, p. 249)

that the stars are really collected together in clusters in some places, where they
form a kind of systems, whilst in others there are either few or none of them,
to whatever cause this may be owing, whether to their mutual gravitation, or
some other law or appointment of the Creator. And the natural conclusion
from hence is, that it is highly probable in particular, and next to a certainty
in general, that such double stars, &c. as appear to consist of two or more stars
placed very near together, do really consist of stars placed near together, and
under the influence of some general law, whenever the probability is very great,
that there would not have been any such stars so near together, if all those,
that are not less bright than themselves, had been scattered at random through
the whole heavens.

Michell has the credit to have applied as first the new theory of probability to astronomy.
His work, however, did not receive much attention, and nearly 40 years passed until the
scientific community became convinced of the existence of binary stars systems.

The systematic search and observation of double stars started with Christian Mayer
(1719–1783). In 1771 he initiated the construction of the Mannheim observatory and
started to observe double stars systematically in 1776. In the following year, Mayer pre-
sented his results to the Electoral Academy of Sciences in Mannheim. He suggested a new
method to study the at that time ill-understood phenomenon of the proper motion of the
stars18 by measuring a change in the relative positions of the components in close double
stars. Mayer called the fainter components of the double stars ‘Fixsterntrabanten’ (‘satel-
lites of fixed stars’), which suggests that he considered at least some of the double stars as
gravitationally bound systems. The then director of the Vienna Observatory, Maximilian
Hell (1720–1792), based, in part, on a misunderstanding19, openly criticised Mayer’s view

16The torsion balance was invented independently by Charles-Augustin de Coulomb (1736–1806).
17For the five brightest stars in the Pleiades Michell calculated a probability of about 1 in 496 000 to find

such a group as a chance alignment among 1 500 stars anywhere in the sky.
18Stellar proper motions were discovered more than half a century before by Edmond Halley (1656–1742).
19An outline in German of the controversy between Hell and Mayer is given by J. S. Schlimmer, Christian

Mayer und die Fixsterntrabanten, 2006, accessible at http://www.epsilon-lyrae.de/.

http://www.epsilon-lyrae.de/Beobachtungstipp/ChristianMayer.html
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of double stars and the use of the term ‘Fixsterntrabant’. Mayer, in turn, saw himself
obliged to write in 1778 a “Thorough vindication of the new observations of satellites of
fixed stars” (Mayer 1778), wherein he speculates upon the possibility of physically related
stellar systems20.

Figure 1.5: Christian Mayer (1719–1783)
was born in Modřice, Moravia. After
studying theology in Mainz he became a
Jesuit. In 1763 he was appointed Court
Astronomer at Mannheim and was the
first to observe double stars systemati-
cally. Image taken from the city panel
of the Mannheim observatory available at
www.mannheim.de. c© Stadt Mannheim.

From his book it emerges that for Mayer the idea
of stars with varying size was natural21 and he was
already aware of the right connection between appar-
ent luminosity, diameter and distance of a star – an
important step towards modern stellar astronomy.

Mayer also tried to proof by means of their proper
motion that the double stars he observed are real bi-
nary stars and compares his observed positions with
various older observations. Even though Mayer be-
lieved that he succeeded, a more accurate investi-
gation shows that the uncertainties in Mayer’s data
were too large to draw any firm conclusion on the bi-
narity of ‘his’ double stars22 and, hence, he confused
several optical pairs with physical ones.

A year later, Mayer published a further book
(Mayer 1779), in which he continued his work on
double stars and gave a list of 72 pairs – the first dou-
ble star catalogue. This book brought Friedrich Wil-
helm Herschel’s (1738–1822) attention to the double
stars. In 1781 Mayer’s catalogue was published in
the Berliner Astronomisches Jahrbuch für 1784 un-
der the caption Verzeichnis aller bisher entdeckten
Doppeltsterne23, where 8 additional already known
pairs were added. Thus, Mayer’s catalogue lists 80 pairs together with their angular sepa-
rations and position angles.

Mayer’s work on double stars may be regarded as the beginning of double stars astron-
omy. However, his work has been completely dwarfed by the work of Herschel published
only a few years later. Nevertheless, Mayer gave the actual impetus to the systematic
study of double stars and has proved himself as one of the most important and farsighted
scientist of his time.

In 1779 Herschel began a systematic search for double stars assisted by his sister Caro-
line. Also Herschel assumed that double stars are merely optical phenomena. Like Galilei

20“endlich kann in einem Doppeltsterne der grösere so wohl als der kleinere eine an sich selbst leuchtende
und bewegliche Sonne seyn, die in ihrem eigenem Systeme um einen allgemeinen Ruhepunkt angezogen
werden.” (Mayer 1778, p. 112).

21“gehöhret derselben [the size of the stars] Verschiedenheit nicht zur Schönheit unsers Weltbaues?” (Mayer
1778, p. 237f.).

22Schlimmer, op. cit. (footnote 19).
23A reproduction of Mayer’s catalogue can be found at http://www.epsilon-lyrae.de/.

http://www.mannheim.de/tourismus-entdecken/sternwarte-4
http://www.epsilon-lyrae.de/Beobachtungstipp/BAJ1784.html
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and Castelli long before him, Herschel aimed at measuring the stellar parallax. At that
time little doubt was casted on the correctness of the heliocentric system24 but the success
of the ‘experimentum crucis’ – the detection of the parallax – was still owing.

Figure 1.6: Friedrich Wilhelm Herschel
(1738–1822) was a German-British as-
tronomer and composer. Born in Han-
nover, he emigrated to Britain in 1757.
Herschel has for the first time convincingly
demonstrated the existence of bound stel-
lar pairs by observing their orbital motion,
and has introduced the term ‘binary sys-
tem’.

Herschel too recognised the advantages of using
the double star method to measure the annual par-
allax (Herschel 1782b, p. 97). His telescopes were
more powerful than any previous one and he soon
discovered much more double stars than he had an-
ticipated. In 1782 Herschel published his first Cata-
logue of double stars with 269 pairs (Herschel 1782a).
A second catalogue containing 434 additional dou-
ble stars appeared in 1785 (Herschel 1785). Un-
like Mayer, however, Herschel was more cautious in
choosing his terms for the stellar pairs he observed.
He regarded the time as not ripe to speculate “about
small stars revolving round large ones” and avoided
using expressions “such as Comes, Companion, or
Satellite” (Herschel 1782a, p. 161).

Applying his earlier statistical argument to Her-
schel’s first catalogue, Michell concluded that most
of the double stars listed by Herschel were physical
systems (Michell 1784, p. 36):

The very great number of stars that
have been discovered to be double, triple,
&c. particularly by Mr. Herschel, if we
apply the doctrine of chances, . . . , can-
not leave a doubt with any one, who is
properly aware of the force of those ar-
guments, that by far the greatest part, if
not all of them, are systems of stars so

near to each other, as probably to be liable to be affected sensibly by their
mutual gravitation; . . . .

It was, however, only in 1802 that Herschel expressed similar views, giving a minute dis-
tinction between optical and real pairs and introducing the term ‘binary system’ (Herschel
1802, p. 480f.).

The actual demonstration that some double stars are true binary systems, is given by
Herschel in the following year. In the fundamental paper, entitled Account of the Changes
that have happened, during the last Twenty-five Years, in the relative Situations of Double-

24The Copernican world system already received confirmation by the mathematical investigations of Jo-
hannes Kepler (1571–1630) and Isaac Newton (1643–1727) and by the observations of James Bradley
(1693–1762) who, in 1725, discovered and correctly interpreted the phenomenon of stellar aberration.
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stars; with an Investigation of the Cause to which they are owing, Herschel gives (Herschel
1803, p. 340)

an account of a series of observations on double stars, comprehending a period of
about 25 years, which, if I am not mistaken, will go to prove, that many of them
are not merely double in appearance, but must be allowed to be real binary
combinations of two stars, intimately held together by the bond of mutual
attraction.

He was not mistaken. The first double star on his “account” is α Geminorum (Castor). By
a detailed analysis he shows that orbital motion is the most probable explanation of the
change in the position of the components. He repeats the analysis for five further systems
(γ Leonis, ε Bootis, ζ Herculis, δ Serpentis, and γ Virginis) and concludes that the only
reasonable conclusion is that all these double stars are binary systems.

Figure 1.7: Friedrich Georg Wilhelm
Struve (1793–1864) was born in Altona, a
borough of Hamburg and studied at the
University of Tartu. Using the largest re-
fractors of his time, he observed a large
number of binary systems with unprece-
dented accuracy.

The next important advancement in double star
astronomy was due to Friedrich Georg Wilhelm
Struve (1793–1864) using the celebrated Fraunhofer
refractor25. Equipped with an excellent driving
clock, this telescope was far superior to any previ-
ously constructed. With this instrument Struve con-
ducted from 1824 to 1837 more than 10 000 micro-
metric measurements with unprecedented accuracy
of nearly 3 000 double stars. Many of his results,
contained in his principal work Mensurae Micromet-
ricae (Struve 1837), are still in harmony with mod-
ern investigations. For example, Struve argues, on
the basis of the theory of probability, that practi-
cally all the pairs with separation smaller than 4′′

and the great majority of those with separations un-
der 12′′ are real double stars, whereas the probability
that an optical pair is included increases with angu-
lar separation, especially for the fainter pairs in his
catalogue (both components fainter than 8.5 mag).

In the following decades many astronomers con-
tinued the work of Herschel and Struve on binary
star systems. They are far too numerous to name
them all here and I refer to Aitken (1964), Heintz
(1971) and Zinnecker (2001) for more detailed trea-
tises of the double star history, especially regarding
the modern period, when so important technologies as photography and spectrography
were developed and applied to astronomy. It is a remarkable historical coincidence that
the first binary system ever resolved by telescope, Mizar, in 1617 by Castelli and Galiliei,

25A detailed description of the Fraunhofer refractor is given by Struve himself (Struve 1825).
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was also the first double star to be observed photographically by George Philips Bond
(1825–1865) in 1857, and its primary component, Mizar A, was the first spectroscopic
binary to be discovered by Edward Charles Pickering (1846–1919) in 1889.

1.2 Definition and classification of wide binaries

The distinction between close and wide binary systems is not well defined. From which
separation on a binary is now called ‘wide’, differs from author to author and what aspects
of the binary systems are studied. One required property of wide binary systems is that
the formation and evolution of the two components occur largely independent from each
other. This is usually fullfilled for separations of more than about 50 AU – just beyond
Plutos orbit.

A dynamical boundary between close and wide binaries can be drawn by means of
Heggie’s law, named after Douglas Heggie. Heggie investigated the formation, evolution,
and destruction of binary stars resulting from gravitational encounters with single stars
(Heggie 1975). In the simplest case he considered a homogeneous stellar system consisting
of single and binary stars. He assumed that all single stars have mass m and a Maxwellian
velocity distribution with velocity dispersion σ.

Heggie found that two classes of binary stars can be distinguished: hard binaries, where
the absolute value of the internal energy of the binary is larger than mσ2 and soft binaries,
where the average kinetic energy of a perturber exceeds the binding energy of the binary.
The behaviour of hard and soft binaries during encounters are quite different. While soft
binaries on average gain energy from encounters with field stars and therefore have their
orbit widened to become even less bound, the opposit is true for hard binaries. Hence,
Heggie’s law can be formulated as follows: Hard binaries get harder and soft binaries get
softer. It can be interpreted in terms of energy equipartition (see also Binney and Tremaine
2008).

Assuming that all stars involved in an encounter have solar masses and taking typical
values for the velocity dispersion in the solar neighbourhood (∼ 20 km s−1), the watershed
(binding) energy −mσ2 corresponds to a semi-major axis of the binary of a few astronomical
units. One could now identify the hard binaries with close binaries and soft with wide
binaries. But this is not common practice and we too follow a different approach in the
present study.

Our working definition is to call a binary system ‘wide’ when its semi-major axis larger
than 200 AU. As we show in §2.4.1, separations smaller than 200 AU lie outside of our
observational window, i.e. we are not sensitive to smaller separations. Binaries with such
a large separation are surely soft in the sense of Heggie.
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Figure 1.8: Depiction of an encounter between a binary system and a perturber (here a black hole) adapted
from Weinberg (1990). Fiducial parameters are indicated. c© Kluwer Academic Publishers.

1.3 Why study wide binary stars?

1.3.1 Constraints on MACHOs

Possibly wide binaries would have remained just a curiosity if it would not have been
realised that they may shed light to one of the most pressing mysteries of modern astron-
omy: the nature of dark matter. In 1985 John Bahcall, Piet Hut and Scott Tremaine
published a seminal paper, where they used data from the widest binaries to constrain the
mass of individual unseen disk objects to be less than 2 solar masses (Bahcall et al. 1985a).

The widest then known binary stars in the Galactic field have separations of about 0.1
pc (Bahcall and Soneira 1981). These are huge orbits with periods of millions of years.
Such wide binaries are only weakly bound and are easily disrupted by encounters with other
stars, molecular clouds or even massive non-luminous objects like black holes (Fig. 1.8).
Thus, wide pairs constitute a sensitive probe of the Galactic gravitational potential and the
distribution of their semi-major axis might contain fossil information about the dynamical
history if the Galaxy.

Bahcall et al. attribute the absence of binaries with separations larger than 0.1 pc
to gravitational encounters that have disrupted them (see also Retterer and King 1982).
Furthermore, they showed that if the mass of these unseen “disk thing”, as they call them,
would exceed 2 solar masses, also binaries with a semi-major axis smaller than 0.1 pc must
have been disrupted.

The study of Bahcall et al. has been subsequently critisised, mainly because of the
sparse data they rely on. In the following years Ira Wasserman and Martin Weinberg
performed a more sophisticated analysis (for a review see Weinberg 1990). In their opinion
the data available at that time is not conclusive and no firm constraints on the mass
of non-luminous objects can be drawn unless much larger wide binary samples become
available.
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Figure 1.9: Exclusion contour plot at 95 % confidence level reproduced from Yoo et al. (2004). Perturber
masses excluded by wide binaries are indicated by the solid line. The dotted and dashed lines are from
the EROS (Afonso et al. 2003) and MACHO (Alcock et al. 2001) microlensing surveys. The long-dashed
line from a disk stability criterion (Lacey and Ostriker 1985). c© The American Astronomical Society.

In recent years some interest has returned to this topic. With new, precise proper
motion data of a large number of stars, it became also possible to construct larger sam-
ples of wide binaries that belong to the halo (Chanamé and Gould 2004). Studying the
halo wide binary population has several advatages. First, the halo is dominated by dark
matter to much larger degree than the disk, enhancing the chance to constrain the mass of
hypothetical MAssive Compact Halo Objects, so called ‘MACHOs’. Second, the kinmatics
of the halo population is not influenced by molecular clouds, whose density distribution is
only poorly known. And third, no star and binary formation has to be taken into account,
which complicates the analysis considerably.

In 2004 Yoo, Chanamé, and Gould announced “The end of the MACHO era”. In thier
paper they showed that the sample of halo wide binaries excludes MACHOs with masses
greater than about 40 solar masses. MACHOs with smaller masses have already been
excluded by microlensing surveys. So it seem that, together with microlensing experiments,
wide binaries leave only a small windows for haloes composed entirely of baryonic MACHOs
(Fig. 1.9).

The constraints of MACHOs masses from halo wide binaries stands, however, not on
a firm basis as was recently pointed out by Quinn et al. (2009). The constraints rely
heavily on the genuineness of the four widest binaries of Yoo et al. sample. Using radial
velocity measurements, Quinn et al. showed that one of these four pairs is most likely not
real. Omitting this pair, substantially relaxes the constraints on MACHO masses. This
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sensitivity clearly means that again larger samples of wide binaries are needed to put severe
constraints on MACHOs.

1.3.2 A probe for dark matter in dwarf spheroidal galaxies

Nowadays it is widely believed that the vast majority of dark matter is of non-baryonic
nature. An often quoted candidate are WIMPs – Weakly Interacting Massive Particles.
There are also alternative theories, such as MOND (MOdified Newtonian Dynamics, Mil-
grom 1983; Milgrom and Bekenstein 1987) that proposes a modification of Newtons law
of gravitation at very low accelerations. It turns out to be difficult to distinguish observa-
tionally between dark matter theories and MOND.

An interesting possibility to do this involving wide binary stars was recently put forward
by Hernandez and Lee (2008). According to their calculations, very wide binaries, with
separations larger than 0.1 pc, should be absent in low velocity dispersion, high-density
dark matter haloes as inferred for the local dwarf spheroidal (dSph) galaxies. There, wide
binary stars should have evolved into tighter binaries because of the dynamical friction
caused by dark matter particles.

Of course, there would be no such orbital thightening in a purely MONDian Universe,
where no dark matter exists. Therefore, Hernandez and Lee conclude that if “plentiful
wide binaries were to be found in local dSph galaxies, the dark matter scenario would be
very seriously challenged.”

In a similar vein, Peñarrubia et al. (2010) examined by analytical and N -body methods
the survival of wide binaries during repeated encounters with dark substructures in dSphs
as expected from the present cosmological paradigm (ΛCDM). According to their calcula-
tions, a truncation in the semi-major axis distribution around 0.1 pc should be present in
most local dSphs beyond which the distribution falls of as a−2.1.

The ACS camera of the Hubble Space Telescope (HST) might be able to test these
predictions for the nearest dSphs. In particular, Peñarrubia et al. estimate that in Coma,
Ursa Minor, Bootes I, Ursa Major II, Sculptor, and Draco several deep ACS exposures
are needed to place significant limits on the wide binary fractions26. In view of upcoming
surveys (Pan-STARRS, LSST, Gaia,. . . ) the study of wide binary stars in nearby dShps
may pose a stringent test through which the ΛCDM model soon has to pass.

1.3.3 Clues to star formation

The observed number and properties of binary and multiple stellar system have tradi-
tionally been used to constrain star formation theory. The additional parameters provided
by binary systems, such as angular momentum, eccentricity, and mass ratio, allow in prin-
ciple to place stronger constraints on the nature of star formation process as single stars
alone (Larson 2001). In the light that probably most stars from as binary and higher-

26This is in line with the results of an (unpublished) feasibility study performed by Marc Horat in a project
work at the University of Basel.
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order multiple systems (Goodwin 2010, and references therein), the study of the statistical
properties of binary systems receives an even greater importance.

Current theories on star formation (e.g. Bate 2009) can not explain the population of the
widest binary stars. For example, Parker et al. (2009) examined the dynamical destruction
of binary systems in stellar clusters of different densities. They found that most binaries
with a separation larger than 1 000 AU disrupted after a few crossing times – even in low-
density cluster. Since most stars (75% to 90%) form in stellar clusters (Lada and Lada
2003), the origin of the wide binary population in the Galactic field (e.g. Duquennoy and
Mayor 1991) is a mystery.

Very recently a formation mechanism has been suggested independently by Moeckel and
Bate (2010) and by Kouwenhoven et al. (2010). The basic idea is that wide binaries form
in the expanding halo of young clusters, where the stars are formed. During the dissolution
phase of open clusters, sometimes two stars leave the cluster in almost the same direction
with almost the same velocity. These two stars can become bound after they have left the
cluster and form a wide binary star. N -body simulations of this dissolution process have
shown that a considerable number of wide stellar pairs can be formed in this way despite
that the original star-forming molecular cloud is too small to produce such pair by direct
fragmentation. Thus, the scenarios suggested by Moeckel and Bate and by Kouwenhoven
et al. potentially solve the mystery of the wide binary field population.

The study of the statistical properties of wide binaries may shed some light on their
formation process and the environment in which they were born. One has to bear in mind,
however, that it is probably not appropriate to directly compare the outcome of current star
formation simulation to the stellar field population (Goodwin 2010). The field population
must be regarded as a mixture of many star forming regions with different initial condi-
tions. Furthermore, the simulations were stopped right after the dissolution of the cluster
when the binary population was released into the field. Thus, the dynamical processing
the binaries experiences in the field is not taken into account in the simulations. This
‘gap’ between simulations and observations must be bridged in order to place meaningful
constraints on star formation theory.

1.4 How study wide binary stars?

1.4.1 Common proper motion

The orbital periods of wide binaries range from a few 1 000 to millions of years – far
too long to be observed directly. Wide binaries are thus generally identified by means of
statistical techniques. Because of their low orbital velocities, wide binaries are expected to
have very similar proper motions. Indeed, a common proper motion (CPM) of two stars
is excellent indication for the genuineness of that pair, especially if it has a small angular
separation (e.g. Lépine and Bongiorno 2007).

Most previous studies made use of proper motion information to distinguish genuine
wide pairs from optical ones. One of the pioneers of using proper motions to study wide
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Figure 1.10: Distance distribution of disk and halo primaries of the CMP pairs identified by Chanamé
and Gould (2004). Average distances for disk and halo sample are indicated. Halo stars can be detected
at larger distances because they have a larger velocity dispersion than that of disk stars. Figure adapted
from Chanamé and Gould (2004). c© The American Astronomical Society.

binary systems was Willem Jacob Luyten (1899–1994). He discovered more than 6 200
CPM pairs with proper motions µ & 0.1′′yr−1 in the course of over 50 years. They are
listed in the Luyten Double-Star (LDS) Catalogue that was completed in 1987 and made
available online through the CDS27 (Luyten 1997). The only IAU colloquium so far focusing
especially on Wide components in double and multiple stars (Dommanget et al. 1988), held
in Brussels, Belgium, in 1987, was then also dedicated to Luyten.

More recently, Chanamé and Gould (2004) analysed the revised New Luyten Two-
Tenths (rNLTT) Catalogue assembled by (Salim and Gould 2003), which includes the
fastest stars originally identified by Luyten (µ & 0.2′′yr−1) and has nearly 60 000 entries.
They found 1 247 CPM pairs classified into two groups: those wide binaries belonging
to the local disk and those belonging the local halo. It appears that both population of
wide binaries have similar distributions of semi-major axis, luminosity, and mass ratio.
Chanamé and Gould therefore conclude that disk and halo wide binaries have probably
formed under similar conditions.

The CPM method is the most successful approach in identifying individual genuine wide
pairs. To be reliably identified, the components of a CPM pair must have relatively high
proper motions and, therefore, tend to be relatively nearby (Fig. 1.10). The proximity has

27Centre de Données astronomiques de Strasbourg accessible at http://cds.u-strasbg.fr/. The CDS-
ViZier catalogue number of the LDS is I/130.
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several advantages: Separations as small as 200 AU are resolved in most imaging surveys
and intrinsically faint companions, such as M dwarfs, can be identified. Furthermore, many
high proper motion stars have precise parallax measurements providing a further stringent
test of the genuineness of the pair.

On the other hand, the restriction to nearby stars limits the size of current samples
of wide binary candidates. Larger wide binary sample are needed, especially regarding
the widest pairs and their implications on dark matter. In the present study, we decided,
therefore, not to use proper motion information but to take a different approach. We do not
attempt to identify individual wide binary stars in first place, but we look for a statistical
signal stemming from real pairs by exploiting position measurements only.

1.4.2 Two-point correlation function

The two-point correlation function (2PCF) is a straightforward and well-established
clustering measure and is widely used to study the distribution of galaxies. It is the
principal tool for studying the large-scale structure of the Universe (e.g. Peebles 1980;
Saslaw 2000).

The 2PCF compares the observed distribution of the positions (of the stars or galaxies)
with the distribution expected if the objects would have been placed by chance in the sky.
The 2PCF measure the excess probability of observing two objects with a certain separation
with respect to a random distribution. The measured excess is then explained by the
presence of pairs bound by gravity. This is just like the argument put forward already in
1767 by Michell.

A mathematical definition of the 2PCF can be given as follows (see also §2.3): let Ω
be an arbitrarely shaped area containing N stars as illustrated in Fig. 1.11. If the stars
were distributed randomly over Ω then the number of pairs having an angular separation
between θ and θ+ dθ, P , equals the total number of distinct pairs in Ω times the fraction
of the area that lies within an annulum of radius θ and width dθ

P (θ)dθ =
N(N − 1)

2

dΩ(θ)

Ω
. (1.1)

For small angular separations we can ignore the spherical nature of the sky. If we further-
more neglect edge corrections due to the finite sample size (see §2.3.2), the area of the
annulum dΩ is simply 2πθdθ.

The number of observed pairs, F , can then be expressed by an analogous formula

F (θ)dθ =
N(N − 1)

2
(1 + w(θ))

dΩ(θ)

Ω
, (1.2)

where we have introduced w, the 2PCF. This equation can be regarded as the defining
formula of the 2PCF. Combining the Eqs. 1.1 and 1.2 we get the simplest estimator of the
2PCF

w(θ) =
F (θ)

P (θ)
− 1 . (1.3)
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For a random distribution we have, of course, w = 0 at all separations A positive w
implies clustering, attributed to the mutual attraction by gravity, a negative w would be
an indication that the stars are avoiding each other.

Figure 1.11: Illustration of the geometry for con-
structing the 2PCF (see text).

The first application of the 2PCF to study
the clustering properties of stars, as far as
known to the author, is by Shanks et al. (1980).
They constructed the angular 2PCF for a sam-
ple of 20 000 stars and found evidence the bluer
and the redder stars in their sample form two
distinct populations.

The study of wide binary stars using the
2PCF was pioneered by Bahcall and Soneira
(1981). They investigated the clustering prop-
erties of a sample of nearly 3 000 stars brighter
than V = 16 mag from the Weistrop (1972) cat-
alogue covering 13.5 square degrees in the direc-
tion of the NGP. Beside the 2PCF, Bahcall and
Soneira also constructed nearest-neighbour dis-
tributions – a related clustering measure – and
demonstrated “that the stars which seem close
together in the sky are in fact close together in
space”. They found that a significant fraction
(∼ 15%) of the stars are members of binary or
triple system with a typical separation of about
0.1 pc. Using distance estimates by photometric parallaxes, they compiled a list of 19
candidate pairs brighter than V = 12 mag, from which six have been shown to be physical
binaries using accurate radial velocity measurements and spectroscopic parallaxes (Latham
et al. 1984).

Garnavich (1988, 1991) used for the first time the technique developed by Wasser-
man and Weinberg (1987) (WW-technique) to model the observed angular 2PCF. The
WW-technique makes some simple assumption on the statistical properties of the WB
population, such as the semi-major axis distribution (single power law), the distribution
of eccentricities (‘thermal’: f(e) = 2e), the orientations of the orbital planes (random),
etc., and projects them onto the sky using the selection criteria of the given star catalogue
(magnitude limits, resolution limits, etc.) and the density distribution and luminosity
function of the stars in the Milky Way Galaxy (see also §2.4).

The modeling allowed Garnavich to infer the local number density of the WBs nWB as
well as the power-law index of the semi-major axis distribution λ from a large sample of
stars brighter than V = 14 mag. For the NGP sample covering nearly 240 square degrees,
he found λ = 0.7 ± 0.2 and an unphysically large density of ∼ 0.06 pc−3, which would
require that every star in the solar neighbourhood is a member of a WB.

This overdensity was already noted by Wasserman and Weinberg. They pointed out
that the six pairs confirmed by Latham et al. imply a uncomfortably large WB density of
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nWB ∼ 0.3 pc−3, which would require a single star density 4 times the observed value of
n∗ ∼ 0.15 pc−3. So, it seemed that there were too many WBs in the Weistrop sample (see
also Weinberg 1988). Most likely this overdensity is due to a large statistical fluctuation,
i.e. the limited samples studied by Wasserman and Weinberg and by Garnavich are not
representative regarding the WB frequency around the NGP as a whole (Saarinen and
Gilmore 1989). The conjecture that the overdensity is due to an undetected star cluster
could not be confirmed by Saarinen and Gilmore, even though there is observational ev-
idence that some WBs are the remnants of disrupted clusters (Loden 1988). In the light
of the formation scenarios suggested by Moeckel and Bate (2010) and by Kouwenhoven
et al. (2010) a possible connection between WBs and open clusters is certainly expected
and worth to be further investigated.

Gould et al. (1995) applied the 2PCF to the HST Snapshot Survey and obtained 13
candidate pairs. They found that the distribution of angular separations is well fitted by
a single power law with index 1.2 ± 0.4. Furthermore, their study suggests that the WBs
have bluer colours than would be expected if both components were drawn randomly from
the field star population.

In their appendix Gould et al. give an excellent review of the work on WBs done so far.
This review seem to mark the end of the use of the 2PCF to study WBs; no follow-up study
is known to the author. In the last 20 years an enormous progress in deep photometric
sky surveys took place and a systematic search for wide binary candidates should be much
more rewarding now.

The next two Chapters describe in detail the author’s PhD project focusing on the
statistical properties of WBs in the Galactic field. The study is based on the data from the
Sloan Digital Sky Survey (SDSS, York et al. 2000), from which the 2PCF is constructed
(Chap. 2). With the aid of a novel weighting procedure based on the binding probability
of each pair, bias-corrected colour and mass-ratio distributions of the WBs are inferred
(Chap. 3). Finally, a ‘ranking list’ of WB candidates is compiled.



Chapter 2

The stellar correlation function from
SDSS

A statistical search for wide binary stars

Abstract. We study the statistical properties of the wide binary population in the
Galaxy field with projected separations larger than 200 AU by constructing the stellar an-
gular two-point correlation function (2PCF) from a homogeneous sample of nearly 670 000
main sequence stars. The selected stars lie within a rectangular region around the North-
ern Galactic Pole and have apparent r-band magnitudes between 15 and 20.5 mag and
spectral classes later than G5 (g − r > 0.5 mag). The data were taken from the Sixth
Data Release of the Sloan Digital Sky Survey. We model the 2PCF by means of the
Wasserman-Weinberg technique including several assumptions on the distribution of the
binaries’ orbital parameters, luminosity function, and density distribution in the Galaxy.
In particular, we assume that the semi-major axis distribution is described by a single
powerlaw. The free model parameters – the local wide binary number density nWB and
the power-law index λ of the semi-major axis distribution – are inferred simultaneously
by least-square fitting. We find the separation distribution to follow Öpik’s law (λ = 1)
up to the Galactic tidal limit, without any break and a local density of 5 wide binaries
per 1 000 pc3 with both components having spectral type later than G5. This implies that
about 10% of all stars in the solar neighbourhood are members of such a late-type wide
binary system. With a relative statistical (2σ) error of about 10%, our findings are in
general agreement with previous studies of wide binaries. The data suggest that about 800
very wide pairs with projected separations larger than 0.1 pc exist in our sample, whereas
none are found beyond 0.8 pc. Modern large-scale surveys make the 2PCF method a vi-
able tool for studying wide binary stars and a true complement to common proper motion
studies. The method is, however, seriously limited by the noise from optical pairs and
the (over)simplifying assumptions made to model the selection effects and to interpret the
measured clustering signal.

This chapter has been published in Astronomy & Astrophysics, 509, A46 (2010).
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2.1 Introduction

Binary stars have traditionally been central for astronomy, especially close binary systems
(with typical orbital periods of days to years), because they are genuine laboratories of stel-
lar evolution and its exotic remnants, making them a cornerstone for determining masses,
distances, and many other fundamental astrophysical parameters. On the other hand, wide
binary systems (orbital periods of many thousands to millions of years) are of particular
interest, too.

Because they are only weakly bound by gravitation, wide binaries are prone to tidal
disruption by passing massive objects, such as massive stars, molecular clouds, MACHOs
(massive compact halo objects), or dark matter (DM) substructure. The shape of their
separation distribution, in particular towards the most extreme, widest separations, should
therefore allow constraints on the mass and frequency of the disruptive perturbers (Retterer
and King 1982), as well as to estimate the age of a population (Poveda and Allen 2004).
Wide binary-based MACHO constraints have been placed (but subsequently criticised) by
several authors (Bahcall et al. 1985a; Weinberg et al. 1987; Weinberg 1990; Wasserman
and Weinberg 1991; Yoo et al. 2004; Quinn et al. 2009).

In a different context, Hernandez and Lee (2008) propose using the tightening of wide
binaries in dwarf spheroidal galaxies through dynamical friction as a test for DM. Moreover,
binaries with separations over 0.1 pc, which are known to exist in the Galaxy (e.g. Lépine
and Bongiorno 2007, also this paper), are in the ‘weak-accelaration’ regime where, in
principle, one could test for possible deviations from Newtonian gravity, such as MOND
(Milgrom and Bekenstein 1987; Close et al. 1990).

Wide binaries are not only probes of dynamical evolution and Galactic structure, but
they also provide important clues to star formation (Larson 2001). The exact outcome of
the binary population in a star-formation event is an exceedingly complex and still unsolved
problem (Goodwin et al. 2007, and references therein). The formation of extremely wide
binaries is particularly difficult to understand (Allen et al. 2007; Parker et al. 2009). A
good knowledge of the wide binary frequency and separation distribution is primary for a
whole host of problems in astrophysics (e.g. Chanamé 2007).

Unfortunately, the long orbital periods of wide binary systems make their identification
very difficult in the first place. There are basically two different methods for detecting
a wide binary system: (1) by the number excess of neighbours around a given star with
respect to a random distribution, or (2) by the common proper motion (CPM) of two well-
separated stars. Although there is no way to observe the orbital motion of a wide binary
pair, the CPM is nevertheless a reliable indicator of a physical relationship between two
individual stars (e.g. Lépine and Bongiorno 2007). In the present study we use the angular
two-point correlation function (2PCF) to measure the excess of neighbours compared to a
random distribution. This method has the advantage that larger samples of more distant
stars can be used, as only the stars’ positions are required. It only allows, however,
statistical statements on the pairing and is limited to relatively small angular separations,
because the noise due to randomly associated pairs increases rapidly (linearly) with angular
separation.
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To date, our knowledge on wide binaries essentially had rested on studies using the CPM
method. There are two excellent recent CPM studies of wide binaries by Chanamé and
Gould (2004) and Lépine and Bongiorno (2007). Based on updated proper motion (Luyten
and Hipparcos) catalogues of stars, 917 and 521 wide binary systems, respectively, have
been identified over the entire Northern sky and with a typical median distance of about
100 pc. Lépine and Bongiorno found the separation distribution of the pairs to follow
Öpik’s (1924) law, i.e. frequency being proportional to the inverse of separation, out to
separations of around 3 500 AU. Beyond this characteristic scale, however, the separation
distribution seems to be falling by a steeper power law, without an obvious cut-off. Lépine
and Bongiorno find wide binaries out to separations of almost 100 000 AU, or 0.4 pc! They
quote a number of 9.5% for nearby (D < 100 pc) Hipparcos stars belonging to a wide
binary system with a separation greater than 1 000 AU, again demonstrating the ubiquity
of the (wide) binary phenomenon. Chanamé and Gould, in addition, achieve a distinction
between wide binaries belonging to the Galactic disc and those belonging to the Galactic
halo. No significant difference in the separation distribution has been found, suggesting
that the disc and halo binaries were formed under similar conditions, despite the very
different metallicities and ages.

The angular 2PCF (also called “covariance function”) is one of the most useful tools
for studying the clustering properties of galaxies, and it has been widely used to probe
the large-scale structure of the Universe (e.g. Peebles 1980, for a more recent study of
the angular clustering of galaxies see Scranton et al. 2002 and references therein.). The
2PCF can also be, and has been, used to measure the clustering properties of stars. While
on large scales the stars are clearly randomly distributed in the Galaxy, as expected in a
collisionless system, correlations up to the 10 pc scale (or even beyond) can be found in
moving groups and halo streamers (Doinidis and Beers 1989), star-forming regions (e.g.
Gomez and Lada 1998), and open star clusters (López-Corredoira et al. 1998). On very
small scales (sub-pc, observationally: sub-arcmin), there is a strong signal due to (visual)
binary stars.

The 2PCF method of probing wide binary stars in the Galactic field was pioneered
by Bahcall and Soneira (1981), who studied the distribution of stars down to a limiting
magnitude V = 16 in a 10 square degree field at the NGP, and found very significant
clustering at a separation of 0.1 pc. Of the 19 binary candidates, 6 turned out to be real
(Latham et al. 1984). The theoretical implications of these observations for the frequency
and separation distribution of the binaries, and a general method for modelling them, was
worked out by Wasserman and Weinberg (1987). To date, there are only few follow-up
studies of the stellar 2PCF (Saarinen and Gilmore 1989; Garnavich 1988, 1991; Gould
et al. 1995). Given this surprising lack of further work on the stellar 2PCF to study wide
binaries, and in view of the enormous progress in deep photometric sky surveys in the past
20 years that should render the 2PCF method – as a true complement to the CPM method
– much more rewarding now, we have started a project to use the huge stellar database of
the Sloan Digital Sky Survey (SDSS York et al. 2000, www.sdss.org) for a detailed stellar
correlation analysis to very faint magnitudes.

http://www.sdss.org
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An independent study of wide binaries in the SDSS database by Sesar et al. (2008)
takes a different approach, based on the “Milky Way Tomography” of Jurić et al. (2008),
where approximate distances are ascribed to all stars by adopting a photometric parallax
relation. Candidate binaries are selected by the requirement that the difference between
two potential components in apparent magnitude is within a certain error equal to the
difference in absolute magnitude.

Using distance information has the fundamental advantage of filtering out the disturb-
ing noise from chance projections and of avoiding the need for a complex, Wasserman and
Weinberg-type modelling to calculate integrated, sky-projected quantities. Although we
plan to include distance information in future work, we show here that the angular corre-
lation analysis is in principle still a viable approach. Our main results agree with those of
the CPM studies. We also show, however, what the limitations of the method are.

The paper is organised as follows. In Sect. 2.2 we describe the SDSS data input and
define the cleansed sample used for the analysis. Section 2.3 is devoted to the angular
correlation function apparatus, followed by an extensive description of the modelling of
the correlation function drawing on a modified Wasserman and Weinberg technique in
Sect. 2.4. Our results for the total sample and for a number of subsamples are presented
in Sect. 2.5 and are critically discussed and compared to previous work in Sect. 2.6. Con-
cluding remarks are given in Sect. 2.7.

2.2 Data

For our analysis we selected a homogeneous sample of stars from the Sixth SDSS Data
Release (DR6; Adelman-McCarthy et al. 2008). We took a rectangular area around the
Northern Galactic Pole (NGP) covering approximately Ωtot ≃ 675 square degrees (dec:
22◦ − 42◦, RA: 165◦− 205◦; see Fig. 2.1). It contains 966 656 primary1 point-like objects –
including quasars, asteroids, and possibly some misidentified galaxies – selected from the
Star view2, having an apparent PSF magnitude3 in the r-band between 15 and 20.5 mag.
Following the SDSS recommendations4, we required the stars to have clean photometry5 in
the g, r, and i band. Although the effect of interstellar dust on the measurements is waek
in the direction of the NGP, we corrected the data using the Schlegel et al. (1998) maps,
which can be easily done, as the extinction at the position of each object is stored in the
SDSS database.

The magnitude limits were chosen to be within the saturation limit of the SDSS CCD
cameras (r ∼ 14 mag; Gunn et al. 1998)6 and the limit where the star-galaxy separation

1Due to overlaps in the imaging, many objects are observed more than once. The best of those observations
is called the primary object, all the others are called secondary objects.

2See cas.sdss.org/dr6/en/help/browser/browser.asp
3See sdss.org/dr6/algorithms/photometry.html#mag psf
4See sdss.org/dr6/products/catalogs/flags.html
5See cas.sdss.org/dr6/en/help/docs/realquery.asp#flags
6See also astro.princeton.edu/PBOOK/camera/camera.htm

http://cas.sdss.org/dr6/en/help/browser/browser.asp
http://www.sdss.org/dr6/algorithms/photometry.html#mag_psf
http://www.sdss.org/dr6/products/catalogs/flags.html
http://cas.sdss.org/dr6/en/help/docs/realquery.asp#flags
http://www.astro.princeton.edu/PBOOK/camera/camera.htm
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Figure 2.1: Distribution of stars (grey points filling the background) in our total sample. Black asterisks
show the positions of bright star masks, white circles those of hole masks. The size of the symbols are not
to scale.

becomes unreliable (r ∼ 21.5 mag; Lupton et al. 2001)7. Additionally, we avoid close stars
being overcorrected by the adopted extinction correction, since most stars with r > 15
mag are behind the entire dust column (Jurić et al. 2008). On the other hand, with the
somewhat conservative faint limit of r = 20.5 we make sure that only very few stars have
a magnitude in the g or i band beyond the 95% completeness limit of 22.2 mag or 21.3
mag, respectively (Adelman-McCarthy et al. 2007, Table 1)8.

The average seeing of the SDSS imaging data (median PSF width) is 1.4′′ in the r-
band (Adelman-McCarthy et al. 2008)9. To be on the safe side, we took the minimum
angular separation to be θmin = 2′′.

2.2.1 Contaminations

Matching our sample with the QsoBest table10 resulted in the exclusion of 10 041 quasar
candidates. Most of them (8 157) have g − r . 0.5 mag and are scattered in a colour-
colour diagram around the otherwise narrow stellar locus as shown in Fig. 2.2. Even after
removing the quasar candidates, the remaining objects in the blue part of our sample show
a suspicious scatter, which is probably caused by further quasars and misidentified galaxies.

7See also sdss.org/dr6/products/general/stargalsep.html
8See also sdss.org/dr6/
9See also http://www.sdss.org/dr6/ and the DR5 paper (Adelman-McCarthy et al. 2007)
10See cas.sdss.org/dr6/en/help/docs/algorithm.asp?key=qsocat

http://www.sdss.org/dr6/products/general/stargalsep.html
http://www.sdss.org/dr6/
http://www.sdss.org/dr6/
http://cas.sdss.org/dr6/en/help/docs/algorithm.asp?key=qsocat
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We therefore decided to exclude all objects with g−r < 0.5 mag, removing a further 286 227
objects from our sample. Furthermore, we reject all moving objects (asteroids) by cutting
on the DEBLENDED AS MOVING flag. This leaves us with 670 388 objects classified as “stars”
in the sample.

The large majority of the stars observed by the SDSS are main sequence (MS) stars.
Finlator et al. (2000) estimate the fraction of stars that are not on the MS to be ∼ 1.0%,
most of them giants and subgiants (∼ 90%), but also horizontal branch stars (∼ 10%).
The number of white dwarfs observed by the SDSS is negligible compared to the number
of MS stars (e.g. Harris et al. 2006). Thus, it seems well-justified to assume that all the
stars in our sample are on the MS.

The cut discussed above at g − r = 0.5 mag implies that our sample contains only
stars from spectral type later than about G5 (Finlator et al. 2000). In addition, this cut
is appropriate for our purposes for the following three reasons:

i) Because they are very young, the bluest MS stars are mostly members of loose
associations, so their clustering properties still represent the peculiarities of their birth
places. Being an interesting subject to study (e.g. Kobulnicky and Fryer 2007), excluding
them assures that our clustering signal is predominantly due to wide binaries in the field
that have lost their memory of their birth places.

ii) As the MS becomes more sparsely populated towards the blue end, and a significant
fraction could be made up by metal-poor halo giants, the assumption that all stars in our
sample are on the MS might not be valid for the bluest stars.

iii) For magnitudes MV & 4.5 mag, the shape of the halo luminosity function agrees
well with that of the disc luminosity function (e.g. Bahcall et al. 1985b, their Fig. 2). Thus,
the cut on g− r = 0.5 mag, which corresponds to a cut at MV ≃ 5.6 mag, allows us to use
the disc luminosity function for the halo component.

2.2.2 Survey holes and bright stars

The sample chosen contains some regions where, for various reasons, no object could be
observed. These regions are masked11 as hole in the SDSS database and can therefore be
easily identified. Holes in the sample affect our analysis in two ways: first, they diminish
the total area of the sample. Second, they introduce an edge effect, as stars near a hole
show a lack of neighbouring stars. The former effect can be easily corrected for in an
approximate way as the SDSS provides the radius θ

(i)
M of its bounding circle for every mask

i. The residual area of the sample is then

Ω ≃ Ωtot −
NM∑

i=1

π
(
θ

(i)
M

)2

(2.1)

where NM denotes the number of hole masks. We discuss the correction for edge effects in
Sect. 2.3.2 in the context of the correlation function.

11See sdss.org/dr6/algorithms/masks.html

http://www.sdss.org/dr6/algorithms/masks.html
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Figure 2.2: Colour-colour diagram of all point-like objects within our coordinate’s and apparent magni-
tude’s limits (grey points). Black points are SDSS quasar candidates. The vertical dashed line indicates
the cut at g − r = 0.5 mag (see text). Approximate spectral classes are indicated.

Restricting ourselves to the masks defined in the r-band, we find NSH = 9 regions
masked as “hole” in our sample (survey holes: SH) with an average radius of θ̄SH ≃ 7.76
arcmin. These survey holes diminish the total area of the sample by approximately 0.46
square degrees, constituting a marginal correction that could be safely ignored.

Very bright (saturated) stars cause similar problems: a very bright object may appear
like a hole in our sample, when the underlying fainter stars blended with this object cannot
be revealed. Within our sample there are NBS = 1 790 bright star (BS) masks in the r-
band. We exclude all objects inside such a mask, removing 545 stars from our sample. The
bounding circles of bright star masks have an average radius of θ̄BS ≃ 1.95 arcmin, resulting
in a further diminishing of the total area of the sample of circa 5.96 square degrees. By
correcting the sample’s total area for both hole and bright star masks, we get a residual
area Ω ≃ 675 − 0.46 − 5.96 deg2 = 668.58 deg2.

2.2.3 Final sample

Our final sample contains Nobs = 669 843 MS stars with clean photometry, a spectral
type later than about G5 (g − r ≥ 0.5 mag), and an apparent magnitude in the range
15 ≤ r ≤ 20.5 mag. The stars are distributed over a solid angle Ω ≃ 668.58 square degrees
(after correcting for bright star masks and minor survey holes), corresponding to a mean
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surface density of n = Nobs/Ω ≃ 1 000 stars per square degree. Throughout this study, we
use the terms “total sample” and “final sample” synonymously.

2.3 Stellar correlation function

2.3.1 Estimation of the correlation function

The angular two-point auto-correlation function (2PCF) w(θ) is defined via the joint
probability dP of finding objects in both the solid angles dΩ1 and dΩ2

dP = n2 (1 + w(θ)) dΩ1dΩ2 , (2.2)

where n is the mean density of objects in the sky and θ is the separation between the
two areas (e.g. Peebles 1980, §45). The number of distinct stellar pairs, F (θ)dθ, with an
angular separation between θ and θ + dθ, observed in a region of angular size Ω, can then
be written as

F (θ)dθ =
Nobs(Nobs − 1)

2
(1 + w(θ))

dΩ(θ)

Ω
(2.3)

where Nobs is the number of stars observed in Ω and dΩ(θ) is approximately equal to the
solid angle of a ring with (middle) radius θ and width dθ

dΩ(θ) ≃ 2πθdθ . (2.4)

Solving for w in Eq. 2.3 yields a simple estimator for the 2PCF:

ŵ(θ) =
F (θ)

P (θ)
− 1 , (2.5)

where P (θ) is the number of pairs expected from a random sample with Nobs points (w = 0
in Eq. 2.3):

P (θ)dθ ≃ πNobs(Nobs − 1)

Ω
θdθ . (2.6)

The 2PCF estimate ŵ(θ) is a measure for the excess of observed pairs separated by an
angle θ with respect to a randomly distributed sample.

Another statistical measure equivalent to the 2PCF, which we use for visualising the
data, is the cumulative difference distribution (CDD) γ̂(θ), giving the cumulative number
of pairs in excess of a random distribution:

γ̂(θ) ≡
∫ θ

θmin

(F (θ′) − P (θ′)) dθ′ =

∫ θ

θmin

ŵ(θ′)P (θ′)dθ′ , (2.7)

with θmin = 2′′ (see above). The CDD is completely equivalent to the 2PCF, but is – as for
all cumulative distributions – more sensitive to statistical trends caused over a wider range
of angular separations (i.e. over several bins), at the expense of a strong correlation of its
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values at different separations. The use of the simple estimator in Eq. 2.5 is appropriate
as long as boundary effects due to the finite sample size are negligible (Bernstein 1994).
We discuss boundary effect in the next section. The number of pairs observed F (θ) is
determined very efficiently inside the SDSS database using the precalculated Neighbors
table which contains all the objects within θmax = 30′′ of any given object.

2.3.2 Boundary effects

Stars close to the sample’s boundary have a somewhat truncated ring dΩ(θ) and con-
sequently show a lack of neighbours. However, as in the present study the probed angular
scale is small compared to the sample’s size, it turns out that these edge effects have a
negligible impact on our results: we estimate the relative error introduced in dΩ(θ) by
omitting the edge correction to be less than ∼ 0.04% for any given θ ≤ 30′′.

The stars near the boundary of a hole or a bright star mask (in the following simply
“hole”) show a lack of neighbours, too. Therefore, only a fraction F tot

H (θ) of all pairs
separated by an angular distance θ has been observed, and we need to correct the observed
number of pairs F (θ). The “true” number of pairs, corrected for edge effects, then reads
as

Fcorr(θ) =
F (θ)

F tot
H (θ)

. (2.8)

In calculating the fraction F tot
H we proceeded in the same way as López-Corredoira et al.

(1998). The calculation is outlined in Appendix 2.A. We find that the relative error in F
for θ = 30′′ amounts to

∆F ≡ Fcorr − F

Fcorr
= 1 − F tot

H ≃ 0.7% . (2.9)

For smaller angular separations, the effect is even less.
Taking into consideration these edge effects, we rewrite the 2PCF estimate

ŵcorr(θ) =
Fcorr(θ)

P (θ)
− 1 (2.10)

and the CDD

γ̂corr(θ) =

∫ θ

θmin

ŵcorr(θ
′)P (θ′)dθ′ . (2.11)

2.3.3 Uncertainty of the correlation function estimate

As the values of ŵcorr at different separations are not independent, Poisson errors may
underestimate the uncertainty in ŵcorr, especially when the angular scales under consid-
eration are large (Hamilton 1993; Bernstein 1994). However, as we see in Sect. 2.5, the
clustering of wide binary stars occurs on small angular scales (θ ≤ 15′′) compared to the
size of our sample (20 deg × 40 deg). We therefore expect that using Poisson errors only
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Figure 2.3: 2PCF as inferred from a random sample (solid circles, left ordinate) and the corresponding
CDD (open circles, right ordinate). Poisson errors are indicated as vertical lines.

underestimates the true errors by a small amount in our case. Thus, we adopt Poissonian
errors on F (θ):

δF (θ) =
√
F (θ) and δFcorr(θ) =

√
Fcorr(θ)

F tot
H (θ)

. (2.12)

Using Eq. 2.10 and Gauss’ error propagation formula, we may write the uncertainty of the
CF estimate ŵcorr as

δŵcorr =
δFcorr

P
=

√
ŵcorr + 1

F tot
H P

, (2.13)

where we omitted the dependencies on θ for the sake of brevity.
The uncertainty in the CDD γ̂ is easily obtained in the same way:

δγ̂corr(θ) =

√∫ θ

θmin

δF 2
corr(θ

′)dθ′ . (2.14)

2.3.4 Testing the procedure for a random sample

To test the validity of the procedure to estimate the 2PCF described in the previous
sections, we generated a random sample having the same number of “stars” and distributed
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over the same area as the stars in our final sample. In addition, we made certain that the
random sample contains the same number of holes with appropriate radii.

For the analysis of the random sample we wrote a dedicated computer program that
lays a grid with a mesh size of 1 arcmin over the sample before counting the pairs. This
grid acts as a distance filter and avoids calculating the distances between all possible pairs:
only pairs with both their components within a cell or with them in two adjacent cells,
respectively, were taken into account.

If our procedure is correct we would expect a zero signal in both the 2PCF and the
CDD when analysing a sample of randomly distributed stars. Figure 2.3 shows the result
of the analysis of our random sample. There is indeed no clustering signal evident, neither
in the 2PCF nor in the CDD. The results are consistent throughout with a zero signal out
to the separation limit of 30”(compare also with Fig. 2.5). This shows that our procedure
for estimating the 2PCF is reliable.

2.4 The model

Our approach to modelling the angular 2PCF is based on a technique developed by Wasser-
man and Weinberg (1987), hereafter WW87. As we describe in more detail in the following
sections, this technique makes some simple assumptions on the basic statistical properties
of wide binaries, and projects these theoretical distributions on the observational plane us-
ing the selection criteria of a given (binary) star catalogue and the geometry of the Milky
Way galaxy (see also Weinberg 1988).

Their long periods make it virtually impossible to distinguish wide binary stars from
mere chance projections (optical pairs) by their orbital motion. Therefore, we do not at-
tempt to identify individual wide binaries, but we look for a statistical signal stemming
from physical wide pairs in the sample, solely exploiting precise stellar position measure-
ments provided by the SDSS.

The original Wasserman and Weinberg (WW) technique calculates the projected sep-
aration distribution to compare it with a sample of wide binaries of known distance and
angular separation. In the present study we are only dealing nwith angular separations.
The calculation of wide binary counts as a function of angular separation alone requires an
appropiate modification of the WW-technique (see also Garnavich 1991), which we discuss
in Sect. 2.4.3.

2.4.1 Wasserman-Weinberg technique

WW87 developed “a versatile technique for comparing wide binary observations with
theoretical semimajor axis distributions”. According to WW87 we may write the number
of observed binaries ψ(s)ds with projected physical separations between s and s+ ds in a
given catalogue of stars as

ψ(s) ds = nWBQ(s)V (s) ds , (2.15)



30 CHAPTER 2. THE STELLAR CORRELATION FUNCTION FROM SDSS

where nWB is the total number density of wide binaries in the solar neighbourhood12, Q(s)
is the reduced distribution of projected separations, and V (s) the “effective volume”.

The total number density nWB is one of the two free parameters in the model that
will be inferred by fitting the model to the observational data. The reduced separation
distribution Q(s) contains the physical properties from the wide binaries (semi-major axis
distribution, distribution of eccentricities, orientation of the orbital planes) projected onto
the observational plane, whereas the effective volume V (s) takes into account the char-
acteristics of the sample under consideration (covered area, range of angular separation
examined, magnitude limits), as well as the stellar density distribution in the Galaxy and
the luminosity function.

As we show in Sect. 2.4.3, this neat formal splitting in physical properties and selection
effects will not be possible anymore after the required modification on the WW-technique
mentioned above. At this point, we discuss the two parts – Q(s) and V (s) – more in detail.

Reduced separation distribution

The reduced separation distribution Q(s) is given by the projection of the reduced (present-
day) semi-major axis distribution q(a) against the sky. Gravitational perturbations due
to stars, giant molecular clouds, and (hypothetical) DM particles cause the semi-major
axes of (disc) wide binaries to evolve. Little is known about the initial semi-major axis
distribution, and usually a single power-law is assumed, because of its simplicity (Weinberg
1988) but also because of theoretical considerations (Valtonen 1997; Poveda et al. 2007, and
references therein). The evolution of the semi-major axis distribution of disc wide binaries
has been modelled by Weinberg, Shapiro, and Wasserman (1987) in terms of the Fokker-
Plack equation. Their numerical simulations suggest that the semi-major axis distribution
evolves in a self-similar way for reasonable choices of the initial power-law index and the
wide binary birth rate function. We decided, therefore, to model the present-epoch semi-
major axis distribution of wide binary stars q(a) by a single powerlaw

q(a) ∝
(
a

pc

)−λ

pc−1 (2.16)

with the power-law index λ, the second free parameter of the model. The range in a where
Eq. 2.16 is a valid description of the observed semi-major axis distribution at the same time
provides the definition of what we consider as a “wide binary star”. We specify this range
by an upper and a lower limit, amin and amax, respectively. There is observational evidence
that the distribution of the semi-major axis of binary stars has a break at 0.001 pc (Abt
1983). Following WW87 and Weinberg (1988), we thus take the lower limit, providing the
division between the close and wide binary populations, to be amin = 0.001 pc (≈ 200
AU). On the other hand, the Galactic tides provide a natural maximum semi-major axis
aT beyond which no bound orbits can exist. Details on the calculation of aT are given in
Appendix 2.B. We find it to be of the order of 1 pc.

12We use the term “solar neighbourhood” for local quantities.
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We normalise q(a) – hence the name “reduced semi-major axis distribution” – such that

∫ aT

amin

q(a) da = 1 (2.17)

giving

q(a) = cλ

(
a

pc

)−λ

pc−1 (2.18)

where

cλ =





(1 − λ)
[
a1−λ

T − a1−λ
min

]−1
, for λ 6= 1

[ln aT − ln amin]
−1 , for λ = 1

(2.19)

with amin and aT in pc.
In a more general treatment, q(a) might also depend on the luminosity classes of the

binary star members, as well as on their magnitudes. Like WW87, we restrict our analysis
to models where q(a) only depends on the semi-major axis a.

It is somewhat disputed whether the semi-major axis distribution has a break at larger a
attributed to the disruptive effects of the environment on the widest binary stars. In their
extensive work Wasserman and Weinberg (1991) (see also Weinberg 1990) conclud that
“although the data suggest a break in the physical distribution of wide binary separations,
they do not require a break with overwhelming statistical significance”, whereas the more
recent study by Lépine and Bongiorno (2007) shows evidence for a break at s ∼ 3 500 AU
(statistically, we have 〈s〉 ≃ a; see Eq. 2.22). In this context, the question arises whether
the assumption that the data is described by a single powerlaw (Eq. 2.16) up to the tidal
limit aT can be rejected with confidence. We address this question in Sect. 2.5.

Assuming that “the binaries’ orbital planes are randomly oriented and that their ec-
centricities e are distributed uniformly in e2” (WW87) we can project q(a) against the sky
by (Weinberg 1988)

Q(s) =

∫ ∞

s/2

da

a
q(a)F(s/a) , (2.20)

where F(x) takes the eccentricity and angular averaging into account for the pairs, which
may be written as (WW87, Weinberg and Wasserman 1988)

F(x) =
4x

π

∫ √
2−x

0

du

√
(u2 + x)(2 − x− u2)

u2 + 2x
. (2.21)

With the above assumptions on the orientations of the orbital planes and the distribu-
tion of eccentricities it can be shown that the average observed projected separation 〈s〉
for a given semi-major axis a is basically equal to a (e.g. Yoo et al. 2004):

〈s〉 =
5π

16
a ≃ 0.98a . (2.22)
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From the normalisations of q(a) it also follows that Q(s) is normalised to unity in the range
[〈s〉min, 〈s〉max].

Substituting η =
√
s/2a in Eq. 2.20, as well as ξ = u/

√
2 in Eq. 2.21 leads to a

convenient form for numerical integration

Q(s) =

(
s

pc

)−λ

Cλ(s) pc−1, (2.23)

where

Cλ(s) = 2λ+5 cλ
π

min
“
1,
√

s/2amin

”

∫

min
“
1,
√

s/2aT

”
dη η2λ+1

√
1−η2∫

0

dξ

√
(ξ2 + η2)(1 − η2 − ξ2)

ξ2 + 2η2
. (2.24)

The integrals in Eq. 2.24 are evaluated using Gauss quadrature (Press et al. 1992). For
s far from amin or aT the distribution of the projected separations Q(s) is approximately
powerlaw

Q(s) ∝
(
s

pc

)−λ

pc−1. (2.25)

Effective volume

As we deal with a magnitude-limited sample, we are plagued by selection effects that must
be properly taken into account. Following WW87, we do this by means of the effective
volume. It allows for the solid angle Ω covered by the sample, the angular separation
range [θmin, θmax] we are examining, and the apparent magnitude limits mmin and mmax.
Furthermore, the effective volume takes the stellar density distribution ρ into account, as
well as the normalised (single star) luminosity function Φ̃ (both described more in detail
in Sect. 2.4.2).

“Making the plausible assumptions that the intrinsic luminosities of the two stars in a
wide binary are independent and distributed in the same way as the luminosities of field
stars” (WW87), and assuming further that the stellar density distribution ρ is independent
of the stars’ absolute luminosities, we may write the effective volume as

V (s) = Ω

s/θmin∫

s/θmax

dDD2 ρ̃(D)

Mmax(D)∫∫

Mmin(D)

dM1dM2 Φ̃(M1)Φ̃(M2) , (2.26)

where we have the standard relations

Mmax(D) = mmax − 5 log10(D/10 pc) (2.27)

Mmin(D) = mmin − 5 log10(D/10 pc) , (2.28)

and ρ̃(D) is normalised such that ρ̃(0) = 1.



2.4. THE MODEL 33

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0

0.5

1

1.5

2

2.5

3
x 10

6

Projected separation  s  in pc

E
ffe

ct
iv

e 
vo

lu
m

e  V
(s

) 
 in

 p
c3

Figure 2.4: Effective volumes calculated using the parameters that correspond to our final sample (Table
2.2) for the three Galactic structure parameter sets as discussed in §2.4.2. Long dashed line: set 1; solid
line: set 2; short dashed line: set 3.

In Fig. 2.4 the effective volumes for the three Galactic structure parameter sets (de-
scribed in the next section) are plotted using the parameters that correspond to our final
sample (see Table 2.2). From the effective volume V (s), it is evident that our study is most
sensitive to projected separations in 0.01 pc . s . 0.1 pc, whereas our study is absolutely
insensitive when s . 0.001 pc or s & 1 pc. Referring to Eq. 2.22, we see that the shape
of the effective volume also indicates that we are insensitive to semi-major axis a . 0.001
pc and for a & 1 pc, which nicely fits the range in a where we assume that the single
power-law model holds. But it also shows that our analysis is not too sensitive to very
wide binary stars with semi-major axes larger than 0.1 pc.

2.4.2 Galactic model

Stellar density distribution

Following earlier work (especially Jurić et al. 2008; Chen et al. 2001, and references therein),
we modelled the stellar density distribution of the Milky Way Galaxy by including two
exponential disc components – a thin and a thick disc – and an elliptical halo component
whose density profile obeys a powerlaw. The contribution of the Galactic bulge is negligible
in the direction of the NGP and it is therefore ignored in the following.
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The three components are added to yield the total density distribution

ρ(D) = ρ(0)ρ̃(D) (2.29)

with

ρ̃(D) =
ρ̃thin(D) + nthickρ̃thick(D) + nhaloρ̃halo(D)

1 + nthick + nhalo
, (2.30)

which is normalised such that ρ̃(0) = 1. The thick disc and the halo component are
normalised with respect to the thin disc via the normalisation constants nthick and nhalo,
respectively. The overall normalisation ρ(0) is calibrated to produce the observed star
counts.

Both the thin and the thick disc populations obey a double exponential density law of
the form (e.g. Bahcall and Soneira 1980)

exp

(
−r − r0

hr

)
exp

(
−|z|
hz

)
(2.31)

where hr and hz are the scale length and the scale height of the disc, z is the object’s
height above the Galactic midplane, and r is its Galactocentric distance in the Galactic
plane. We take the Sun’s distance from the centre of the Galaxy in the Galactic plane
to be r0 = 8 kpc. Jurić et al. (2008) find that the Sun is located z0 ≃ 25 pc above the
Galactic midplane (Chen et al. (2001) give z0 ≃ 27 pc). It is straightforward to derive the
following useful relations

z = z0 +D sin b (2.32)

r2 = r2
0 + d2 − 2r0d cos ℓ (2.33)

d = D cos b , (2.34)

where d is its distance from the Sun in the Galactic plane and ℓ and b are its Galactic
longitude and latitude, respectively. The stellar density is fairly constant within the sample,
so we neglect the direction-dependent density variations. For the sake of simplicity, we
adopt the coordinates of our sample’s centre: ℓ = 175.6◦ and b = 81.6◦. (Dividing our
sample into subsamples and summing over them taking their centres hardly influences our
results.)

In line with Jurić et al. (2008) and Chen et al. (2001) we assume the scale heights to be
independent of absolute magnitude M . Using capitals for the thick disc’s and lower case
letters for the thin disc’s scale height and length, we may write the normalised number
density distribution of the stars in the Galactic thin disc as

ρ̃thin(D) = exp

(
−r − r0

hr
− |z|
hz

)
· exp

(
z0
hz

)
(2.35)

and that of the thick disc as

ρ̃thick(D) = exp

(
−r − r0

Hr
− |z|
Hz

)
· exp

(
z0
Hz

)
, (2.36)
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Table 2.1: Galactic structure parameters

structure set 1 set 2 set 3
parameter
z0 [pc] 25 25 27
hz [pc] 245 300 330
hr [pc] 2 159 2 600 2 250
nthick 0.13 0.12 0.0975
Hz [pc] 743 900 665
Hr [pc] 3 261 3 600 3 500
nhalo 0.0051 0.0051 0.00125
κ 0.64 0.64 0.55
k 2.77 2.77 2.5

where the rightmost factors are for normalisation purposes and ensure that ρ̃thin(0) =
ρ̃thick(0) = 1.

The density distribution of the stellar halo population is modelled by a powerlaw with
index k. The observational data prefer a somewhat oblate halo giving an ellipsoid, flattened
in the same sense as the Galactic disc, with axes a = b and c = κa, where κ controls the
ellipticity of the halo (cf. Jurić et al. 2008)

ρ̃halo(D) =

[
r2 +

(
z
κ

)2

r2
0 +

(
z0

κ

)2

]− k
2

, (2.37)

which, of course, also satisfies ρ̃halo(0) = 1.
We compare three different sets of structure parameters:
Set 1: The measured values from Jurić et al. (2008) (see their Table 10). These values

are best-fit parameters as directly measured from the apparent number density distribution
maps using their “bright” photometric parallax relation (their Eq. 2). They are not cor-
rected for bias caused by, e.g., unresolved stellar multiplicity, hence the term “apparent”.

Set 2: The bias-corrected values from Jurić et al. (2008) (see again their Table 10).
These values were corrected for unrecognised stellar multiplicity, Malmquist bias, and sys-
tematic distance determination errors by means of Monte Carlo-generated mock catalogues
(Jurić et al. 2008, §4.3.). Following Reid and Gizis (1997), the fraction of “stars” in the
local stellar population that in fact are unresolved binaries is taken to be 35%. However,
the halo component was not included in the mock catalogues, and its structure parame-
ters were therefore not corrected, but the measured values are used instead. This set of
parameters will be referred to as our standard set.

Set 3: As a third independent set of Galactic structure parameters, we refer to the
somewhat earlier work of Chen et al. (2001). It is also based on observations obtained with
the SDSS, but Chen et al. (2001) infer the density distribution of the stars by inverting
the fundamental equation of stellar statistics (e.g. Karttunen et al. 1996).



36 CHAPTER 2. THE STELLAR CORRELATION FUNCTION FROM SDSS

These three sets of Galactic structure parameters are summarised in Table 2.1. Jurić
et al. (2008) quote unrecognised multiplicity as one of the dominant sources of error in
the distance determination of the stars. (Only the uncertainties in absolute calibration of
the photometric parallax relation might be even more important, but little can be done to
increase its accuracy at the moment; see, however, Sesar et al. (2008).) It is therefore not
surprising that the scale heights and lengths of the bias-corrected parameter set are larger
than those of the measured parameters as the misidentification of a binary star as a single
star results in an underestimation of its distance. Regarding the values derived by Chen
et al. (2001), we find the largest difference in the normalisation of the halo component
that is about four times smaller than that given by Jurić et al. (2008), whereas the other
parameters are not too dissimilar.

Stellar luminosity function

For our study we refer to the luminosity function (LF) inferred by Jahreiß and Wielen
(1997) using Hipparcos parallaxes, which gives reliable values for a wide magnitude range
(−1 ≤MV ≤ 19). (The faint end of the LF is somewhat uncertain and Jahreiß and Wielen
(1997) give only a lower limit in the range 20 ≤MV ≤ 23. We take that lower limit at the
faint end to be the true value of the LF in that magnitude range.)

We need to transform the Jahreiß and Wielen (1997) LF from visual (V -band) into
r-band magnitudes, i.e. from Φ(MV ) to Φ(Mr). We perform this transformation in an
unsophisticated way by combining the photometric parallax relation from Laird et al.
(1988), which was calibrated using the Hyades and is linear in (B − V ) (their Eq. 1a)

MV = 5.64(B − V ) + 1.11 mag (2.38)

with a transformation equation that is obtained by subtracting Eq. 1 from 3 in Bilir et al.
(2005)

V − r = 0.491(B − V ) − 0.144 mag . (2.39)

The linearity of the photometric parallax relation removes any inversion problem, since it
assures – in a mathematical sense – that a colour index (B − V ) exists for every MV . For
a given distance we then have

Mr = 0.913MV + 0.0476 mag (2.40)

and the transformed LF is simply

Φ(Mr) = Φ(MV )
dMV

dMr

. (2.41)

Using linear interpolation (the brightest bin at Mr = −1 mag is an extrapolation), we
finally have rebinned Φ(Mr) such that the bins are centred on integer values of absolute
magnitude Mr and have a width of ∆Mr = 1 mag.
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We normalise the LF by integrating over the absolute magnitude range corresponding
to our total sample

Φ̃(Mr) =
Φ(Mr)∫∞

5.2
Φ(µ)dµ

=
Φ(Mr)

n′
∗

(2.42)

with n′
∗ ≃ 0.094 pc−3 being the total number density of stars in the solar neighbourhood

having g−r > 0.5 mag. Assuming that all stars are on the MS, we find, using the (“bright”)
photometric parallax relation from Jurić et al. (2008), that the cut at g − r = 0.5 mag
corresponds to Mr ≃ 5.2 mag. (We first transformed it from g − r into r − i using Eq. 4
from Jurić et al.)

2.4.3 Modification of the Wasserman-Weinberg technique

To derive a theoretical angular 2PCF we need to calculate the expected number of
wide binaries as a function of angular separation. To this end, the above-described WW-
technique requires the modification that we address now.

Let ϕ(θ)dθ be the number of wide binaries observed with an angular separation between
θ and θ+dθ. For a given distance D, we have ϕ(θ)dθ = ψ(s)ds and s = Dθ. (Note that our
unit for s and D is pc, whereas θ is in rad.) The latter expression can be used to write the
reduced separation distribution Q(s) as Q(Dθ). This introduces an explicit dependency
on D, so we need to incorporate Q(Dθ) into the integration over D in the formula for the
effective volume (Eq. 2.26). This incorporation is the reason it is no longer possible to
separate the reduced separation distribution from the effective volume in a formal way like
in Eq. 2.15.

Furthermore, we need to modify the limits in the integration over D in Eq. 2.15. Re-
calling that for a given semi-major axis a, the average observed projected separation is
〈s〉 = 0.98a (Eq. 2.22), it appears to be appropriate to let the integration limits run from
〈s〉min/θ to 〈s〉max/θ (Garnavich 1991). We take 〈s〉min = 0.98amin = 9.8 · 10−4 pc and
〈s〉max = 0.98aT (for the calculation of the tidal limit aT see Appendix 2.B).

Putting it all together, we may write the number of observed wide binaries as a function
of angular separation as

ϕ(θ) = nWBΩ

〈s〉max/θ∫

〈s〉min/θ

dDD3ρ̃(D)Q(Dθ)

Mmax(D)∫∫

Mmin(D)

dM1dM2Φ̃(M1)Φ̃(M2) , (2.43)

where we have included an additional factor D into the integration over D, because ds =
Ddθ for a given D.

The model-2PCF is now determined by adding the number of physical pairs, calculated
by Eq. 2.43, to the number of pairs expected from a random sample given by Eq. 2.6

wmod(θ) =
ϕ(θ) + P (θ)

P (θ)
− 1 =

Ωϕ(θ)

πNobs(Nobs − 1)θ
. (2.44)
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The two free parameters – nWB and λ – are determined in a least-square sense by fitting
the measured 2PCF ŵcorr(θ) to the model-2PCF wmod(θ) as described more in detail in the
next section.

2.4.4 Fitting procedure

We determine the two free parameters of the model, nWB and λ, by means of a Leven-
berg-Marquardt nonlinear least-square algorithm (Lourakis 2004)13, which minimises the
value of the χ2 defined as

χ2 =
N∑

i=1

(
ŵcorr(θi) − wmod(θi)

δŵcorr(θi)

)2

. (2.45)

The data is binned in steps of ∆θ ≡ θi+1 − θi = 1′′, where θ1 = θmin = 2′′ and θN = θmax =
30′′ as imposed by the resolution limit of the SDSS and maximal distance in the Neighbors
table, respectively. As a result, we have N = 28 here. Given the approximative character
of our study, the use of the this standard definition of the χ2 is appropriate, even though
the values of the 2PCF at different angular separations are not strictly independent of each
other.

Following Press et al. (1992), we use the incomplete gamma function Q(χ2|ν) with
ν = N − 2 = 26 degrees of freedom as a quantitative measure of the goodness-of-fit. (N-2
because the model has two free parameters: nWB and λ.) Values of Q near unity indicate
that the model adequately represents the data.

2.4.5 Confidence intervals

To estimate the uncertainties of our best-fit values, we use Monte Carlo confidence
intervals (MCCRs) (e.g. Press et al. 1992, §15.6). Assuming Poissonian errors, we generate
10 000 synthetic data sets by drawing the number of unique pairs “observed” in the k-th
synthetic sample F

(k)
syn(θ) from a Poisson distribution with mean F (θ), where F (θ) is the

observed number of pairs, not corrected for edge effects due to survey holes. The “true”
number of pairs in a synthetic sample is then given by dividing F

(k)
syn by F tot

H (see §2.3.2).
For each synthetic sample, we determine best-fit values for the model’s free parameters,

n
(k)
WB and λ(k), in a least-square sense as described above. A p%-MCCR is defined by the

line of constant χ2 which encloses p% of the best-fit values in the nWB versus λ plane
(see Fig. 2.6). The confidence intervals of nWB and λ are then given by the orthogonal
projection of the MCCR onto the corresponding axis.

We include in our error estimate only the uncertainties stemming from the pair counts
in F (θ). Neither the uncertainties in the Galactic structure parameters nor those in the
LF are taken into account.

13We use levmar-2.2.
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Figure 2.5: 2PCF as inferred from the total sample (solid circles, left ordinate) and the corresponding
CDD (open circles, right ordinate). Poisson errors are indicated as vertical lines. Model curves for the
three Galactic structure parameter sets are plotted, too, but as the differences between them are marginal
they lie one upon the other, giving a single solid line.

2.5 Results

2.5.1 Analysis of the total sample

The results of the analysis for the total sample are shown in Fig. 2.5 and Table 2.3.
Figure 2.5 shows the 2PCF estimate ŵcorr(θ) and the CDD γ̂(θ). The statistical uncertain-
ties calculated according to Eq. 2.13 are shown as vertical lines. A strong clustering signal
out to at least θ = 10′′ is evident, whereas the CDD suggest that there are pairs in excess
of a random distribution up to maximum angular separation examined, that is, up to 30”.
The outlier at θ = 9′′ is probably a random fluctuation. We also plot in Fig. 2.5 best-fitting
models using the three Galactic structure parameter sets described in Sect. 2.4.2.

The best-fit values of the two free parameters, nWB and λ, are tabulated in Table 2.3
for the three Galactic structure parameter sets. The power-law index λ appears to be quite
independent of the set we choose. The wide binary density nWB, on the other hand, shows
some variation. The difference between the sets 1 and 2 reflects, for the most part, the
difference in the overall normalisation ρ(0) of the density distribution, whereas in set 3
the unequal halo normalisation with respect to the other two sets also contributes to the
difference in nWB.
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Table 2.2: Parameters of the final sample and of the subsamples

(Sub)sample Ω ℓ b Nobs Deff
a aT

a fHalo
a

[deg2] [deg] [deg] [pc] [pc] %
total 668.58 175.6 81.6 669 843 1 555 1.07 30.0

r < 20.0 mag 668.58 175.6 81.6 535 595 1 380 1.06 25.2
r < 19.5 mag 668.58 175.6 81.6 425 674 1 235 1.06 20.6

left 334.57 191.2 73.7 326 333 1 495 1.08 28.3
right 334.01 102.5 84.8 343 510 1 625 1.05 31.0

A 78.94 180.1 68.3 77 008 1 460 1.09 26.8
B 78.10 167.5 75.3 76 011 1 510 1.08 28.6
C 78.99 136.0 79.8 76 686 1 565 1.06 29.9
D 78.81 93.3 78.4 82 780 1 635 1.05 30.6
E 88.23 208.0 69.7 87 751 1 485 1.08 27.4
F 88.30 210.6 78.6 85 563 1 545 1.07 29.5
G 87.95 215.2 87.5 88 440 1 615 1.05 31.0
H 88.27 33.4 83.6 95 604 1 700 1.04 31.8

a Calculated using the Galactic structure parameter set 2.

Table 2.3: Best-fit values: total sample

set of structure nWB λ Q χ2/ν fWB

parameters [pc−3] %
set 1 0.0052 1.00 0.29 1.14 10.2
set 2 0.0069 1.01 0.30 1.13 13.6
set 3 0.0061 1.01 0.29 1.14 12.1
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Figure 2.6: Distribution of the best-fit values for the total sample using the structure parameter set 2
obtained by the Monte Carlo procedure described in the text. The solid contours (MCCRs) are lines of
constant χ2 and enclose 68.3%, 95.4%, and 99.7% of the best-fit values.

We also list the goodness-of-fit Q and the corresponding reduced chi-square values (χ2

divided by the degrees of freedom ν) in Table 2.3. All three sets of Galactic structure
parameters give equally good fits, whereas the reduced chi-square values, which are only
slightly more than unity, indicate that we have not severely underestimated the uncertainty
in the 2PCF.

In Fig. 2.6 we show, representative of the other structure parameter sets, the distribu-
tion of the best-fit values from the synthetic samples using set 2, our standard set. In the
same figure the 68.3% (1σ), 95.4% (2σ), and 99.7% (3σ) MCCRs are also plotted. Quot-
ing 95.4% confidence intervals throughout, we find for our final sample using the Galactic
structure parameter set 2

nWB = 0.0052+0.0006
−0.0005 pc−3 and λ = 1.00+0.13

−0.12 . (2.46)

The power-law index λ of semi-major axis distribution is consistent with Öpik’s law (λ = 1)
up to the Galactic tidal limit, whereas the number density nWB corresponds to a wide
binary fraction with respect to all stars (no colour-cut) in the solar neighbourhood of

fWB ≡ 2nWB

n∗
= 10.2+1.2

−1.0 %, (2.47)
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Figure 2.7: MCCRs for the three Galactic structure parameter sets corresponding to the total sample.
Long dashed line: set 1; solid line: set 2; short dashed line: set 3. The crosses indicate the best-fit values
inferred from the true observed number of pairs, Fcorr(θ).

where n∗ ≃ 0.10 pc−3 is the total local stellar number density, i.e. the integral over the
whole Jahreiß and Wielen LF. (The local wide binary density nWB corresponds only to
wide binaries with both components having g − r > 0.5 mag.)

We show the confidence regions corresponding to the three sets of Galactic structure
parameters in Fig. 2.7. The confidence intervals for λ agree for all the sets, which demon-
strates that we can determine λ and its confidence intervals reliably – provided that no
systematic error has crept into our analysis. The wide binary density nWB, on the other
hand, is more sensitive to the exact values of the Galactic structure parameters than λ is,
so the values we have derived for the wide binary density nWB and the fraction fWB should
be viewed with caution. We are, however, confident that the true value of the wide binary
density nWB is within a factor of 2 of our derived value.

Since the structure parameter set 2 is – as far as known to the authors – the only one
systematically corrected for unresolved multiplicity, we give that set more weight. From
now on, we use the bias-corrected values from Jurić et al. (2008), i.e. our standard set 2,
exclusively.

Having determined the two free parameter in our model, we can calculate the number of
wide binaries in our total sample as a function of the projected separation s. We show the
distribution in Fig. 2.8 whose shape is largely dominated by the effective volume, i.e. by
selection effects. In particular, this distribution implies that we have observed 830+250

−215
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Figure 2.8: Distribution of wide binaries as a function of projected separation s that is expected to be
observed in the total sample, given the model assumptions and the selection criteria we have adopted (see
text).

Table 2.4: Best-fit values: r < 20.0 mag and r < 19.5 mag

(sub)sample nWB λ Q χ2/ν fWB

[pc−3] %
r < 20.0 mag 0.0057 1.15 0.18 1.25 11.3
r < 19.5 mag 0.0064 1.22 0.34 1.09 12.7

very wide binaries with a projected separation larger than 0.1 pc in our total sample, while
none are expected to be found beyond 0.8 pc, given our selection criteria. However, that
extremely wide binaries with projected separations of more than 1 pc can exist in the
Galactic halo has recently been confirmed by Quinn et al. (2009).

2.5.2 Differentiation in terms of apparent magnitude

To test the consistency of the standard model, we used two subsamples having brighter
upper apparent magnitude limits than our total sample and analysed them in the same
way as the total sample itself. We set the upper apparent magnitude limit to r = 20.0 mag
and r = 19.5 mag – all other selection criteria (including the lower apparent magnitude
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Figure 2.9: 2PCF and CDD for the r < 20.0 mag and r < 19.5 mag subsamples together with the
corresponding model curves. Up-pointing triangles (long-dashed lines) are for the r < 20.0 mag subsample,
whereas down-pointing triangles (short-dashed lines) are for the r < 19.5 mag subsample. The symbols
were shifted apart by 0.25′′ for better visibility.

limits) remain unchanged. The main parameters of these subsamples are listed in Table
2.2.

In Fig. 2.9 we show the 2PCF and the CCD as in Fig. 2.5, together with the corre-
sponding model curves for standard set 2 (see caption). The best-fit values are listed in
Table 2.4. The MCCRs of the r < 20.0 mag and r < 19.5 mag subsamples are shown in
Fig. 2.10.

If the model were self-consistent, we would expect that the best-fit values agree with
each other within their uncertainties. Figure 2.10 indicates that this is not the case: It ap-
pears that the best-fit values are systematically shifted to higher densities and larger power-
law indices when using a brighter upper magnitude limit. As we discuss in Sect. 2.6.2, this
inconsistency is most likely an artefact of the (oversimplifying) model assumptions and
does not entirely undermine our results.

2.5.3 Differentiation in terms of direction

In a previous study, Saarinen and Gilmore (1989) found that the binaries appear to
be highly clumped in the NGP. However, it has not become entirely clear whether this
patchiness of the wide binary distribution in the sky is a real physical characteristic of the
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Figure 2.10: MCCRs for the r < 20.0 mag (long dashed contours) and r < 19.5 mag (short-dashed
contours) subsamples. For comparison, the MCCR for our final sample is also shown (solid-contours). The
crosses have the same meaning as in Fig. 2.7.

Table 2.5: Best-fit values: left and right

subsample nWB λ Q χ2/ν fWB

[pc−3] %
left 0.0055 1.00 0.55 0.94 10.8

right 0.0046 1.03 0.82 0.74 9.1

wide binary population or if it is due to statistical fluctuations. In principle, we can check
whether the wide binary density varies with position in the sky by dividing our sample
into subareas.

To begin with, we divide our sample in two halves by cutting it along the α = 185◦

meridian. In the following, we refer to the subarea with α < 185◦ as the “left” subsample
and the other half as the “right” subsample. The subsamples’ main parameters are listed
in Table 2.2.

In Fig. 2.11 we show the 2PCFs inferred from the left and the right sample, as well as
the corresponding CDDs. It appears that there are a few more pairs in excess of random
in the left half. In the same figure also the corresponding model curves are plotted. The
best-fit values are listed in Table 2.5.

In Fig. 2.12 we show the MCCRs of the left and the right subsamples. The left sub-
sample indeed shows a higher wide binary density than the right one. The difference is



46 CHAPTER 2. THE STELLAR CORRELATION FUNCTION FROM SDSS

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0

0.5

1

1.5

2

2.5

Projected angular separation θ in arcseconds

T
w

o−
po

in
t c

or
re

la
tio

n 
fu

nc
tio

n  w
(θ

)

0

700

1400

2100

2800

3500

C
um

ul
at

iv
e 

pa
irs

 in
 e

xc
es

s 
of

 r
an

do
m

 
 γ(

θ)

Figure 2.11: 2PCF and CDD for the left and the right subsamples, together with the corresponding
model curves. Left-pointing triangles (long-dashed lines) are for the left subsample, whereas right-pointing
triangles (short-dashed lines) are for the right subsample. The symbols were shifted apart by 0.25′′ for
better visibility.

significant at the 3σ level. The power-law indices, on the other hand, do agree in both
subsamples. Regarding the total sample, the right half differs significantly (at 3σ), whereas
the left half is more consistent with it.

The difference in the wide binary density between the left and the right halves is
probably a real feature, as any inadequacies of our model (e.g. inaccuracies of the stellar
density distribution we use) should affect both halves in almost the same manner. To
examine this apparent positional dependency of the wide binary density in more detail, we
divide our sample further into eight subsamples, each covering 10◦×10◦. They are labelled
from A (“upper left”) to H (“lower right”) as suggested in Fig. 2.13, where the abscissa
can thought of representing the right ascension from 165◦ (“left”) to 205◦ (“right”) and
similarly the ordinate represents the declination from 22◦ (“bottom”) to 42◦ (“top”). The
subsample’s main parameters are again summarised in Table 2.2.

Figure 2.13 shows the 2PCFs estimate and the CDDs with the best-fit model curves.
The corresponding best-fit parameters are listed in Table 2.6. Some subtle differences are
apparent between different subsamples. While the CDD in A, B, C, and G are reproduced
well by the model, the CDD in D, F, and H appears to be too flat. In those subsamples
it seems that almost no physical pairs are present at angular separations over 15′′, in
agreement with the findings of Sesar et al. (2008) (see Sect. 2.6.1).
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Figure 2.12: MCCRs for the left (long-dashed contours) and right (short-dashed contours) subsamples.
For comparison, also the MCCR for our final sample is shown (solid contours). The crosses have the same
meaning as in Fig. 2.7.

The subsample E appears to be an outlier, because it contains almost twice as many
pairs in excess of random as the seven other subsamples. The listed best-fit values confirm
the peculiar character of subsample E having the highest wide binary density of all eight
subsamples, together with the lowest power-law index. As far as the authors can judge,
there is no obvious special feature (e.g. open star cluster) in subsample E that could cause
this anomaly.

The 2σ MCCR are shown in Fig. 2.14. Except for the outlier E, all the other subsamples
are quite consistent with each other. Also, no obvious trend, e.g. with Galactic latitude b,
is apparent. To what extent is the subsample E responsible for the difference between the
right and the left subsamples?

To answer this question, we repeated the analysis of the total and left (sub)sample
excluding subsample E. The results are listed in Table 2.7. The wide binary density drops
significantly to a value more consistent with the right subsample. Thus, we conclude that
the difference between the right and the left subsamples is largely caused by the outlier
E. Apart from subsample E, the wide binary densities in different directions appear to
be consistent with each other. The reason for the high density in subsample E remains
unclear. However, a statistical fluctuation cannot be ruled out to a level better than 2σ.
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Figure 2.13: 2PCF (solid circles) and CDD (open circles) for the subsamples A to H, together with the
corresponding model curves. The subfigures are arranged as the corresponding subareas would be seen on
the sky.

Table 2.6: Best-fit values: A to H

subsample nWB λ Q χ2/ν fWB

[pc−3] %
A 0.0050 1.27 0.92 0.64 9.9
B 0.0054 1.00 0.96 0.57 10.7
C 0.0041 1.02 0.36 1.07 8.2
D 0.0046 1.19 0.29 1.13 9.1
E 0.0077 0.73 0.24 1.18 15.2
F 0.0045 1.14 0.37 1.07 8.9
G 0.0054 0.83 0.67 0.86 10.6
H 0.0042 1.27 0.64 0.88 8.4

Table 2.7: Best-fit values: excluding subsample E

subsample nWB λ Q χ2/ν fWB

[pc−3] %
total\E 0.0049 1.06 0.40 1.04 9.6
left\E 0.0049 1.12 0.76 0.79 9.8
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Figure 2.14: 95.4% MCCRs for the subsamples A to H. The crosses have the same meaning as in Fig. 2.7.

2.6 Discussion

2.6.1 External (in)consistencies

In this section we compare our results with those of previous studies. Our first point
concerns the observed angular 2PCF. From the CDD of our total sample shown in Fig. 2.5
we have noted pairs in excess of random up to θmax = 30′′. This is contradictory to Sesar
et al. (2008) who find that there are essentially no physically bound pairs with an angular
separation θ > 15′′. (We note, however, that this is in accord with some of our subsamples,
see Fig. 2.13.) We considered several possible reasons for this apparent discrepancy, such
as differences in the selection criteria of the Sesar et al. sample with respect to our sample,
underestimation of the total area of holes in our sample, or an overcorrection of edge
effects due to those holes, but we convinced ourselves that none of them can account
for this disagreement. A real physical difference in the wide binary population studied,
e.g. caused by the fact that Sesar et al.’s sample is largely disc-dominated, while our final
sample has a substantial halo contribution of ∼ 30%, can be excluded, as previous studies
(Latham et al. 2002; Chanamé and Gould 2004) found that the disc and halo wide binary
populations are reasonably consistent in their statistical characteristics.

Regarding the wide binary fraction, Sesar et al. also find a much smaller wide binary
fraction of below 1% (decreasing with height above the Galactic plane), as compared to
our fWB ≈ 10%. Even if all pairs with a semi-major axis larger than 3 000 AU (beyond the
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Figure 2.15: 2PCF and CDD as inferred from our total sample as in Fig. 2.5. The model curve is for the
broken power-law model from Lépine and Bongiorno (2007) (see text).

“break”) were ignored, we would still find a wide binary fraction of 4.6%. On the other
hand, Lépine and Bongiorno (2007) give a binary fraction of at least 9.5% for separations
larger than 1 000 AU, which is in rough agreement with our results (setting amin = 1 000
AU we find fWB ≈ 8.3%).

Studying a much smaller region containing brighter stars as compared to our sample,
WW87 and Garnavich (1988, 1991) found an unphysically large wide binary density in the
direction of the NGP. Saarinen and Gilmore (1989) attribute this overdensity to a large
statistical fluctuation. The region where this overdensity was found would be located in
our subarea H. But as we probe fainter stars, no density enhancement is evident in that
subarea. The slight overdensity we found in subarea E is different from that previously
noted by WW87 and Garnavich.

As to the separation distribution, previous studies have found that the observational
data are described by Öpik’s law (λ = 1) up to a certain maximum separation (“break”):
Lépine and Bongiorno (2007) find this break to be around 3 500 AU, beyond which a steeper
slope, with λ ≈ 1.6, should apply. Sesar et al. (2008) basically agree with Lépine and
Bongiorno and find in addition that the maximum separation increases with height above
the Galactic plane. Poveda and Allen (2004) divided their wide binary catalogue (Poveda
et al. 1994) into two subsamples consisting of the oldest and youngest systems, respectively,
and find that the “maximum major semiaxis for which Öpik’s distribution holds is much
larger for the youngest binaries (am = 7862 AU) than for the oldest (am = 2409 AU)”.
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Chanamé and Gould (2004) find the data to be described by a single powerlaw with an
index of approximately 1.6 for their disc and halo samples. However, they note a “puzzling”
flattening of the distribution of the disc binaries between 10”and 25”. As already suggested
by Sesar et al., this flat range might be the domain where Öpik’s law is valid. In view of the
substantial uncertainties inherent in studies by Lépine and Bongiorno and by Chanamé and
Gould, the two studies appear to be broadly consistent. Similar to our study, Garnavich
(1991) assumed that the semi-major axis distribution is described by a single powerlaw.
He finds the power-law index to be 0.7±0.2 for his NGP sample covering nearly 240 square
degree. At intermediate Galactic latitudes he finds the slope to be steeper: λ = 1.3 ± 0.2.
His data seem to favour a (somewhat unrealistic14) “cutoff” around 0.1 pc, especially for
the NGP sample.

The question of a break in the separation distribution has much been discussed in the
context of DM constraints. Wasserman and Weinberg (1991), for example, show that the
observational data suggest a break but they do not require one statistically. Looking at the
CDD for our total sample in Fig. 2.5, we note that our best-fit model slightly overestimates
the number of pairs in excess of random at larger angular separations, and a more curved
model line would be preferred by the data. This could indeed be interpreted as a hint that
the semi-major axis distribution is broken, because having a steeper power-law index from
a certain semi-major axis on would result in a flatter CDD model curve. In principle, we
could easily fit a broken powerlaw to our data as well. However, too many free parameters
will only destabilise our modelling. Instead we check whether our data are also consistent
with the specific broken power-law distribution found by Lépine and Bongiorno (2007). To
this end we use a broken reduced semi-major axis distribution of the form

q(a) = q1(a) + q2(a) = cλ1
a−λ1Θ(ac − a) + cλ2

a−λ2Θ(a− ac) (2.48)

with the Heaviside function Θ that introduces a break at semi-major axis ac. It is nor-
malised, as in §2.4.1, according to

∫ aT

amin

q(a) da =

∫ ac

amin

q1(a) da +

∫ aT

ac

q2(a) da = 1 . (2.49)

Using the values given by Lépine and Bongiorno (2007), λ1 = 1, λ2 = 1.6, and ac = 0.02
pc, we find for the normalisation constants

cλ1
=

[
ln ac − ln amin +

(aT/ac)
1−λ2 − 1

1 − λ2

]−1

(2.50)

and
cλ2

= cλ1
aλ2−1

c . (2.51)

The distribution of the projected separations Q(s) then splits into a sum, too:

Q(s) =

(
s

pc

)−λ1

Cλ1
(s) pc−1 +

(
s

pc

)−λ2

Cλ2
(s) pc−1, (2.52)

14“Physically, one doesn’t expect to see a sharp cutoff.” (Weinberg 1990)
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where Cλi
(s) is defined as in Eq. 2.24 with the limits chosen appropriately when integrating

over η.
We now keep the parameter given by Lépine and Bongiorno fixed so that our broken

power-law model has only one free parameter: the wide binary density nWB. In Fig. 2.15 we
show the best-fit model curves corresponding to nWB = 0.0075 pc−3. The broken power-law
model also gives a decent fit to the 2PCF inferred from our total sample. (One should not
be misled by large discrepancy between the model and the CDD showing the cumulative
difference between the 2PCF and the corresponding model curve.) With a goodness-of-fit of
Q ≃ 0.0047 and a reduced chi-square of χ2/ν ≃ 1.85, the broken power-law model provides
a significantly worse bestfit to the data than our single power-law model. Nevertheless,
as the errors in the 2PCF are slightly underestimated, the model is not put into question
until Q < 0.001 (Press et al. 1992, their §15), and we conclude that the broken power-law
distribution found by Lépine and Bongiorno (2007) can not be rejected with confidence
either.

2.6.2 Internal (in)consistencies

Figure 2.10 shows that the best-fitting values for λ and nWB are inconsistent, within
the adopted random errors, when the limiting magnitude is varied. Both parameters are
systematically shifted by roughly 20% when the limiting magnitude is changed by 1 mag.
Further inconsistencies were met when we tried to differentiate our total sample with
respect to colour (not shown here). This very likely means that there are unaccounted for
systematic errors in the modelling, resting on oversimplified assumptions.

A basic assumption on the properties of wide binaries was that both components are
drawn at random from the same stellar LF. There is, however, some evidence that this is
not quite correct: Gould et al. (1995) noticed that “binaries are bluer and more distant than
one would expect if they were formed of random combinations of field stars”. Also Lépine
and Bongiorno (2007) find “that the luminosity function of the secondaries is significantly
different from that of the single stars field population, showing a relative deficiency in low-
luminosity (8 < MV < 14) objects”. Similarly, Sesar et al. (2008) report that blue stars
(g − i . 2.0 mag, corresponding roughly to g − r . 1.4 mag) that are a member of a wide
binary, have more blue companions than expected from the LF. (For red stars, however,
they find that the components are drawn randomly from the LF.) Moreover, it has long
been known (e.g. Bahcall and Soneira 1980, their Fig. 2) that stars of early spectral type
have smaller scale heights than late type stars; therefore, the assumption that the stellar
density distribution depends only on distance, and not on the luminosity of the stars, might
be an oversimplification as well.

On the other hand, the internal inconsistency discussed is overemphasised in Fig. 2.10
because we only include the statistical errors stemming from the pair counts when deter-
mining the MCCRs. If we also included the errors in the Galactic structure parameters
and those from the LF, the MCCRs would be considerably larger, and the inconsistency
evident from Fig. 2.10 would not be as severe as it seems. That a variation in the Galactic
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structure parameter has a significant impact at least on nWB, is apparent from Fig. 2.7.
The systematic drift towards larger λ and nWB, when adopting a brighter upper apparent
magnitude limit (cf. Fig. 2.10), still points to some inconsistencies in our model. We think,
however, that these inconsistencies do not entirely undermine our major results, although
the quoted uncertainties might be considerably larger.

2.7 Summary and conclusions

We have derived the angular 2PCF for nearly 670 000 SDSS stars brighter than r = 20.5
mag and redder than g − r = 0.5 mag in a region of approximately 670 square degrees
around the NGP. Various corrections had to be made for quasar contamination, survey
holes, and bright stars. There is an unambiguous correlation signal on small scales up to
30”. We modelled this signal by a modified WW-technique, closely following a previous
study of Garnavich (1988, 1991) that was based on a much smaller sample of stars. The
modelling involved a number of parametrised distribution functions: the spatial density
and LF of stars, as well as the separation distribution of binaries. The Galactic model used
is based on the recent study by Jurić et al. (2008) and the stellar LF derived by Jahreiß
and Wielen (1997). For the wide binary semi-major axis distribution we assumed a single
powerlaw. Furthermore, essential assumptions are: (1) binary stars follow the same density
distribution as single stars, (2) both components of a binary are randomly drawn from the
single star luminosiy function. These assumptions allowed a significant simplification of
the model. The Galactic structure parameters were fixed (we explore three different sets),
while the local wide binary number density nWB and the power-law index λ of the semi-
major axis distribution were left free; i.e., they have been determined by a least-squares
fitting algorithm.

The best fit to the observed angular 2PCF of the total sample was obtained with
λ ≈ 1.0, which corresponds to the canonical Öpik law, and nWB ≈ 0.005 pc−3, meaning
an overall local wide binary fraction of about 10.0% in the projected separation range of
0.001 pc (200 AU) to 1 pc (Galactic tidal limit). Previous studies (Poveda and Allen 2004;
Lépine and Bongiorno 2007; Sesar et al. 2008) have also found the data to be consistent
with Öpik’s law, but only to a maximal separation that is considerably smaller than the
Galactic tidal limit. Beyond that maximum separation, the distribution continues with a
steeper decline. We have shown that our data are also consistent with the broken powerlaw
found by Lépine and Bongiorno, although with a fit of lower quality (though involving only
one free parameter, namely, nWB). Given this ambiguity, we are not able to put any strong
constraints on the presence of a break in the wide binary separation distribution, which
is regarded as one of the most interesting aspects of wide binaries. As to the wide binary
fraction, we are in good accord with Lépine and Bongiorno (2007), whereas an apparent
discrepancy with Sesar et al. (2008) remains.

A differentiation of the sample with respect to limiting apparent magnitude turned up a
systematic dependence of the binary parameters on the sample depth, which is most prob-
ably an artefact caused by oversimplified model assumptions. This conjecture is strength-



54 CHAPTER 2. THE STELLAR CORRELATION FUNCTION FROM SDSS

ened by the impossibility obtaining self-consistent results when differentiating with respect
to colour. We conclude that one or more of the simplifying assumptions put into the model
(e.g. that the luminosities of the binary components are independent of each other and
draw randomly from the single-star LF or that binaries’ density distribution follows exactly
the single-star density distribution and that the density distribution is independent of the
stars’ luminosities) are not quite correct.

Differentiating the sample in terms of direction in the sky did yield some modest but
non-significant variations. Only in one direction (subarea E) was an unexplained overden-
sity found.

While we have shown here that the stellar angular 2PCF, as a complement to common
proper motion studies, basically works and remains a viable tool for the study of wide
binaries, it has become clear that this method is severely limited by the need for – even more
– complex modelling. To relax those simple model assumptions would unduly complicate
the analysis much further and probably no longer yield unique solutions. Any more efficient
progress will indeed have to involve distance information to discriminate against unwanted
chance projections. We plan to include distance information in our future work. In spite
of the limitations of the present, simple modelling of the angular 2PCF, we think that the
general result for the total sample derived here, i.e. λ ≈ 1 (Öpik law) and fWB ≈ 10%
among stars having a spectral type later than G5, to within an uncertainty of 10%-20%,
is a robust result.

2.A Edge correction for holes

To quantify the edge effect from holes in our sample, we assume that the holes are circular
and flat (Euclidian) and that effects due to intersecting holes are negligible. Let Ak(θ) be
the solid angle of the annulus of width 2θ around a hole of radius θ̄k

Ak(θ) = 4πθ
(
θ̄k + θ

)
, with k = {SH,BS} , (2.53)

where k stands for hole masks (survey holes: SH) or bright star masks (BS). Due to the
holes in our sample we observe only a fraction F tot

H (θ) of all stellar pairs in the residual
solid angle Ω sparated by an angular distance θ

F tot
H (θ) = 1 − 1

Ω

∑

k={SH,BS}
NkAk(θ)

(
1 − FH(θ; θ̄k)

)
, (2.54)

where FH(θ; θ̄k) is the fraction of all pairs separated by θ we observe in Ak(θ)

FH(θ; θ̄k) =
2π

Ak(θ)

∫ θ̄k+θ

θ̄k

xf(x; θ, θ̄k)dx . (2.55)

Here, f is the fraction of the area πθ2 of the disc with radius θ around a star that lies
outside the hole (Fig. 2.16)

f(x; θ, θ̄k) =
Ωout(x; θ, θ̄k)

πθ2
= 1 − Ωin(x; θ, θ̄k)

πθ2
, (2.56)
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Figure 2.16: Illustration of the geometry used to correct for edge effects due to holes. The large circle
represents the bounding circle of a hole or a bright star mask. A star lying close to the hole is indicated.
The region within a distance θ of that star (highlighted in grey) is partially inside the hole (dark grey
intersection).

whereas Ωin = πθ2−Ωout is the area of that disc within the hole, i.e. the intersection. With
the nomenclature given in Fig. 2.16, we find

Ωout = θ̄2
kα− yp+ θ2β − yq , (2.57)

where

α = arcsin

(
y

θ̄k

)
; β = arcsin

(y
θ

)
(2.58)

and

p =
√
θ̄2

k − y2 ; q =
√
θ2 − y2 . (2.59)

Solving x = p+ q for y using Maple gives

y =
1

2x

√
2θ2

kx
2 − x4 − θ4 + 2θ2x2 + 2θ2θ2

k − θ4
k , (2.60)

where the integration in (2.55) was performed with Maple, too.

2.B Galactic tidal limit

A crude estimate of the Galactic tidal limit aT, i.e. of the maximum semi-major axis amax

of a binary star with total mass M orbiting in the Galactic tidal field is provided by the
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Jacobi limit rJ (sometimes also referred to as zero-velocity surface or Roche sphere) (e.g.
Binney and Tremaine 2008, §8.3)

rJ ≃
(

M

3M(<D̃)

) 1
3

D̃ , (2.61)

where D̃ is the galactocentric distance of the binary system and M(<D̃) is the Galactic

mass enclosed within radius D̃. Then, M(<D̃) is given by

M(<D̃) =
v2

c

G
D̃ ≃ 1.1 · 107

(
D̃

pc

)
M⊙ , (2.62)

where we have adopted the canonical value of the circular speed vc = 220 kms−1.
For a rough estimate of this distance range, it is useful to define the effective depth of the

sample as the most likely distance of an arbitrarly chosen star (Weinberg and Wasserman
1988). In a magnitude-limited sample the total number of stars expected to be observed
in a (heliocentric) distance range between D and D + dD is

dN(D) = ΩdDD2ρ(D)

Mmax(D)∫

Mmin(D)

dMΦ(M) , (2.63)

where Ω denotes the solid angle covered by our sample, ρ(D) the density distribution,
and Φ(M) the stellar LF. The absolute magnitudes Mmin(D) and Mmax(D) are given by
Eq. 3.38 and 3.39, respectively. The effective depth Deff is then given by the median value
of the distribution dN(D) (Weinberg and Wasserman 1988)

1

2
=

∫ Deff

0
dN(D)∫∞

0
dN(D)

=

∫ Deff

Dmin
dN(D)

∫ Dmax

Dmin
dN(D)

, (2.64)

where Dmin and Dmax are used for the numerical integration and are chosen to bracket
the theoretical distance range probed by our sample, which – neglecting interstellar dust
extinction – is readily found from the apparent magnitude limits, mmin and mmax, and the
absolute magnitudes limits, Mmin and Mmax, given by Φ(M). We take them to be

Dmin = 10(mmin−Mmax+5)/5 = 10(15−21.5+5)/5 ≃ 0.5 pc (2.65)

and
Dmax = 10(mmax−Mmin+5)/5 = 10(20.5−(−0.5)+5)/5 ≃ 160 kpc . (2.66)

In Table 2.2 we list the values of Deff for our various (sub)samples calculated using the
Galactic structure parameter set 2. With the notation of §2.4.2, the effective galactocentric
distance D̃eff can be expressed as

D̃2
eff

= r2
0 +D2

eff
cos2 b− 2r0Deff cos b cos ℓ

+z2
0 + 2z0Deff sin b+D2

eff
sin2 b . (2.67)
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Its values are typically somewhat above 8 kpc.
The last parameter we need to specify in order to estimate the Galactic tidal limit aT,

is the total mass of the binary star M. Given the magnitude limits of our sample we may
write the average mass of a star in the sample as

〈m〉 =

mmax∫
mmin

mξ(m)dm

mmax∫
mmin

ξ(m)dm

=

Mmax∫
Mmin

m(M)Φ(M)dM

Mmax∫
Mmin

Φ(M)dM

, (2.68)

where ξ(m) denotes the mass function and m(M) the mass-luminosity relation which we
take from Kroupa et al. (1993). The transformation into r magnitudes was performed as
in §2.4.2.

Statistically, we expect the total mass of a binary star to be M = 2〈m〉, and we finally
estimate the Galactic tidal limit according to

aT(D̃eff,M) ≃
(

M

3M(<D̃eff)

) 1
3

D̃eff

≃ 3.1 · 10−3

(
M

M⊙

) 1
3

(
D̃eff

pc

) 2
3

pc . (2.69)

The values of aT are around 1 pc and we list them for various (sub)samples in Table 2.2.





Chapter 3

Statistical properties of wide binary
stars

Distributions of colours and mass ratios

Abstract. We study the colour and mass ratio distribution of Galactic wide binary
(WB) stars by combining the angular two-point correlation function for a large sample
of SDSS stars with distance information from a photometric parallax method. A novel
weighting procedure is applied based on the binding probability of a double star as inferred
from its angular separation (2′′ ≤ θ ≤ 30′′) and difference in parallax. About 4 000 WBs
with separations larger than 200 AU are found statistically. Best fitting of the angular
correlation function is achieved for a minimum binding energy that corresponds to an
average maximum relative orbital velocity of 370 m/s. The resulting maximum separation,
artificially introduced by the method adopted, is around 0.02 pc (4 000 AU). The colour
range studied is restricted to 0.2 < r − i < 1.5 mag, equivalent to a mass range of 0.2 .

M . 0.85M⊙. The weighted, bias-corrected colour distribution of our WB candidates
is in good accord with the colour distribution of single field stars, in line with previous
findings. There is a significant lack of pairs with very different colours: pairs with a colour
difference ∆(r − i) & 1 mag, corresponding to a mass difference ∆M & 0.5M⊙, seem to
be systematically underrepresented as compared to a random pairing of field stars. This
preference for pairs with similar colour or mass is also reflected in the distribution of mass
ratios q. For primary masses between 0.5 and 0.85 M⊙, our mass ratio distribution is
peaking at q > 0.8, while it is nearly uniform in the range 0.4 < q < 0.8. The secondary-
mass distribution on the other hand is consistent with the field mass function. Previous
observations tended to be broadly consistent with a more uniform q and random pairing,
but recent WB studies support our finding. Star-formation simulations show an inverse
trend (low q overabundance) for WBs. However, evolutionary effects could considerably
change the original mass-ratio distribution.

This chapter has been submitted to Astronomy & Astrophysics.
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3.1 Introduction

Wide binary stars (called WBs hereafter), i.e. binaries with separations typically larger
than 100 AU, have only recently shifted into the focus of intense research. In the first
place, these loosely bound stellar systems constitute sensitive probes for the gravitational
potential of the Milky Way Galaxy. In particular, halo WBs are promising candidates to
constrain the masses and densities of MACHOs (e.g. Yoo et al. 2004; Quinn et al. 2009),
even though stringent constraints are still difficult to place, mainly because the samples
of the widest binaries (a ∼ 0.1 pc) are still too small. In the near future WBs should
also permit to test the CDM paradigm, which predicts that stellar pairs with a & 0.1 pc
should be absent or strongly depleted in the dark haloes of dSph galaxies due to dynamical
friction (Hernandez and Lee 2008; Peñarrubia et al. 2010).

The shape of the semi-major axis distribution of WBs, especially for the widest pairs,
is therefore of particular interest. The canonical distribution is flat in log a (fa(a) ∝ a−1;
Öpik’s 1924 law). Recent studies mostly agree that the semi-major axis distribution of the
widest WB deviates from Öpik’s law and fall off more steeply (e.g. Poveda and Allen 2004;
Chanamé and Gould 2004; Lépine and Bongiorno 2007).

WBs are also highly relevant to the problem of star formation. The very presence of
extremely wide (semi-major axis a & 104 AU) binary stars in the Galactic field has been
described as a ‘mystery’ (e.g. Parker et al. 2009). Most stars (75% to 90%) are born in
stellar clusters (e.g. Lada and Lada 2003) where such loosely bound pairs cannot survive,
beeing rapidly disrupted by dynamical encounters even in low-density clusters. Scenarios
for the formation of extreme WBs have very recently been suggested by Moeckel and Bate
(2010) and Kouwenhoven et al. (2010). According to their simulations, very wide binary
stars can be formed in the expanding halo of a dissolving cluster when, loosely speaking,
two stars leave the cluster in almost the same direction with almost the same velocity. Both
studies make precise predictions on the expected binary properties, such as the semi-major
axis distribution and the mass-ratio distribution.

In a previous paper (Longhitano and Binggeli 2010, Paper I hereafter) we constructed
the angular two-point correlation function (2PCF) for a sample of about 670 000 stars
selected from the Sloan Digital Sky Survey (SDSS, York et al. 2000) from which we derived
a WB fraction of roughly 10% and a separation distribution that generally agrees with
Öpik’s law up to the tidal limit around 1 pc. Our data were, however, also consistent with
a broken power-law distribution like that found by e.g. Lépine and Bongiorno. The large
uncertainties involved with our purely statistical approach were, as with every angular
correlation analysis, clearly caused by the noise from optical (non-physical) pairs.

Common proper motion studies of WBs are considered superior with this respect be-
cause they allow, with a high degree of certainty, the identification of individual pairs
(Chanamé and Gould 2004; Lépine and Bongiorno 2007; Dhital et al. 2010). The disad-
vantage is the restriction to relatively nearby stars with large proper motions resulting in
a limited sample size. The correlation method, on the other hand, can be significantly
improved by including distance information.
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The scope of the present study is to filter out optical pairs in the statistical analysis
of Paper I by complementing it with a photometric parallax method. Most of the stars
observed by the SDSS are main sequence (MS) stars (99%, Finlator et al. 2000) which have
a fairly well defined colour-luminosity relation that can be used to estimate the luminosity
and, hence, the distance of every star in our sample. We rely here on the photometric
parallax relation (PPR) derived by Jurić et al. (2008) (J08 hereafter) who fit a fourth-
order polynomial to recent PPRs from the literature. The major source of uncertainty
in the PPR is the variance in stellar metallicity. The resulting uncertainty in distance
is typically of the order of 100 pc – very large as compared to the typical separation of
a WB. The PPR distance estimates derived in this way are therefore still too crude to
allow a reliable distinction between optical and true pairs, individually. Thus the filtering
procedure has to be of a statistical nature again.

We suggest and apply a statistical weighting procedure based on the binding probability
of two stars, given their distance estimates from the PPR and their angular separation.
Every stellar pair in our sample (with an angular separation between 2”and 30”) gets a
statistical weight assigned, which is large for true pairs but small for optical ones. Given
the lack of information about the relative velocities of the pairs, we assign to every pair in
our sample an average relative velocity. In this way a maximum separation is introduced,
which is depriving us of constraining the separation distribution at very large separations.
However, our procedure guarantees that the resulting colour distributions are dominated
statistically by the real pairs in our sample, while optical pairs have a negligible influence.
We therefore concentrate in this paper on the colour distributions of WB components,
which are then translated into a mass-ratio distribution of WBs.

The mass-ratio distribution of binary stars is of primary importance for star formation
theory. In their seminal multiplicity study of solar type stars, Duquennoy and Mayor
(1991) found a mass-ratio distribution rising towards small mass ratios, whereas Fischer
and Marcy (1992) found a more uniform distribution for M dwarfs (however, both studies
are dominated by close binaries). For our WBs here we find a modest tendency for equal
masses (high mass ratios), in good accord with the recently published study of Dhital et al.
(2010), but in apparent disagreement with the simulations of Moeckel and Bate (2010).

The combination of a correlation analysis with a PPR was used by Sesar et al. (2008).
By constructing a volume-complete sample from the SDSS using the PPR from J08, these
authors derived a colour distribution of WB stars in a model-independent way. Our ap-
proach is different, as we rely on the Wasserman and Weinberg (1987) technique (see also
Paper I) to correct the observed colour distribution for selection effects, i.e. we are not
fully model-independent. On the other hand, Sesar et al. are limited to a relatively narrow
distance interval (0.7 to 1 kpc) to avoid a bias against pairs with very different colours,
while no such limitation is present in our study. We regard the two studies, whose results
are in general agreement (see, however, Paper I), as complementary.

The paper is organised as follows. In Sect. 3.2 we describe the data and sample of
WBs used. In Sect. 3.3 we explain the method of filtering out optical pairs by introducing
weights based on the binding probability. In Sect. 3.4 we present the resulting colour and
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Figure 3.1: Distribution of distances: (a) 648 651 stars from our sample bluer than r − i = 1.5 mag; (b)
73 402 primary candidates; (c) 73 402 secondary candidates.

mass-ratio distributions, which then, in discussion Sect. 3.5, are compared with previous
observational and theoretical work. Section 3.6 presents our concluding remarks.

3.2 Data and sample

The present study is based on the total sample used in Paper I. The data are drawn from
the Sixth SDSS Data Release (Adelman-McCarthy et al. 2008). To be consistent with
the photometric parallax relation (PPR) of J08 that holds in the range 0.1 < ri < 1.5
mag, we adopt a second colour cut removing all stars with ri > 1.5 mag, where we have
defined ri ≡ r − i. The first cut was set at g − r = 0.5 mag, implying ri & 0.18 mag, to
avoid confusion with quasars (see Paper I). This leaves us with 648 651 main sequence stars
having an apparent r-band magnitude between 15 and 20.5 mag and a spectral type later
than G5. Using the PPR (Eq. 3.1) the colour cuts translate to the absolute magnitude
range 5.2 . Mr . 12.0 mag. The stars are distributed over the same solid angle as in
Paper I, covering about 670 square degrees in the direction of the Northern Galactic Pole.

To each star in the sample is now assigned an absolute magnitude Mr and a distance
estimate D using the ‘bright’ PPR from J08, which reads

Mr(ri) = 3.2 + 13.3ri− 11.5ri2 + 5.4ri3 − 0.7ri4, (3.1)

valid for 0.1 < ri < 1.5 mag. The main source of uncertainty in the PPR stems from its
variance in metallicity and is estimated to amount to σ̂Mr

≈ 0.3 mag (J08). The distance
estimate is then given by

D(r,Mr) = 10(r−Mr+5)/5 pc . (3.2)

Following J08, we find a relative distance error σD/D ≈ 15%. A typical star in our sample
lies in a distance of about 800 pc. Consequently, the uncertainty in distance is typically of
the order of 100 pc. The distribution of distances is shown in Fig. 3.1a.

We tentatively consider every stellar pair having an angular separation θij between 2′′

and 30′′ as a ‘WB candidate’. There are 73 402 such pairs in our sample. We show the
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distance distribution of the primary candidates in Fig. 3.1b, and that of the secondary
candidates in Fig. 3.1c. The primary candidate is the member of a WB candidate that
has a brighter absolute magnitude assigned by Eq. 3.1. We see that, on average, the
secondaries are observed at smaller distances than the primaries, simply because of their
fainter intrinsic luminosity. Most of the secondaries have distances smaller than 2 000 pc.
This also means that most of the primaries beyond 2 000 pc have no physical partner in
our sample. We therefore exclude all pairs with distances larger than Dmax = 2 000 pc.

This cut in distance leaves us with 456 089 stars and 37 610 WB candidates closer than
2 000 pc, hereafter called our restricted sample. Using the Galactic model from §4.2 in
Paper I, we estimate that the halo contribution to our restricted sample is only about 7%.
Thus most of the stars in our sample belong to the thin or the thick Galactic disk.

3.3 Method

Most of the 37 610 WB candidates are optical pairs, i.e. they are not gravitationally bound,
and appear to be close to each other when viewed from Earth. In principle, one could
distinguish, up to a certain degree, between optical and real pairs using accurate distances.
(The identification of true pairs could be pushed further by exploiting proper motion and
radial velocity data.) But with the rather crude distance estimates provided by the PPR,
it is not possible to reliably distinguish individual optical from true stellar pairs, as the
linear maximum separations of WBs is no more than ca. 1 pc – a hundred times smaller
than the typical uncertainty in distance.

We therefore decided to adopt a probabilistic procedure: the idea is to establish a
measure for the probability of a given visual pair to be bound based on the overlap of
the (probabilistic) distance distributions of the two components. This measure allows us
to assign a weight wij to each pair consisting of the two stars i and j. If these weights
are chosen in a meaningful way, i.e. such that the angular correlation properties of the
candidates are correctly reproduced, we can use the weights to transform the observed
colour distribution of our WB candidates (being mostly optical pairs) into a probabilistic
colour distribution of true WB stars. For the pair (i, j) we then simply add wij instead
of 1 to the corresponding colour bin. Optical pairs should get very low weights (near 0),
so that the resulting colour distribution is dominated by the true pairs. The difficulty lies
in choosing the weights correctly. In the next Sections we describe the calculation of the
weights in detail.

3.3.1 A measure for the binding probability

Following Jiang and Tremaine (2010), we call a binary bound if EJ < Ec, where EJ is
the Jacobi constant and Ec its critical value given by Eq. 22 of Jiang and Tremaine. In
a co-rotating coordinate system (x, y, z) with origin in the Galactic midplane at the Sun’s
distance from the Galactic centre Rg and the x-axis pointing radially outward, the y-axis in
the direction of the Galactic rotation and the z-axis towards the Southern Galactic Pole,
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the Jacobi constant for a WB in the Galactic field takes the following form (Eq. 21 in
Jiang and Tremaine)

EJ =
1

2

(
ẋ2 + ẏ2 + ż2

)
+ Φeff(x, y, z) . (3.3)

Here, x, y and z are relative coordinates, i.e. x ≡ x1 −x2, etc. . . The effective potential Φeff

includes the gravitational potential between the members of the binary system as well as
terms representing the effect of the Galactic tides

Φeff(x, y, z) = 2ΩgAgx
2 +

1

2
νgz

2 − G(M1 + M2)√
x2 + y2 + z2

, (3.4)

where Ωg is the angular speed of the Galaxy, Ag the Oort constant and νg the vertical
frequency (see Jiang and Tremaine (2010) and §3.2 of Binney and Tremaine (2008) for more
details). Here, the index ‘g’ means “at radius Rg”. Furthermore, G is the gravitational
constant and Mi is the mass of component i of the binary system.

Strictly speaking, this expression for the Jacobi constant is only valid in the solar neigh-
bourhood, not too far from Galactic midplane. The stars in our sample are typically about
800 pc above that midplane and Eq. 3.3 should be regarded only as a first approximation
for the WB stars in our sample.

The small angular separation of the WB candidates and their positions around the
NGP allows some further approximations. As θij ≪ 1 we may approximate the physical
separation rij of the pair (i, j) by

rij ≈
√

(Di −Dj)2 + θijDiDj ≈ |Di −Dj | ≈ z . (3.5)

Since most WB candidates are optical, rij is typically much larger than the projected
separation

sij ≈ θij min(Di, Dj) , (3.6)

which constitutes an upper limit to the relative coordinate x. Hence, x ≪ z, allowing us
to omit the first term in Eq. 3.4

Φeff(rij) ≈
1

2
νgr

2
ij −

G(Mi + Mj)

rij
. (3.7)

Taking the numerical value for the vertical frequency νg given in Table 1.2 of Binney and
Tremaine (2008) we find

Φeff(rij) ≈ 4.1 · 103
(m

s

)2
(

3

5
r2
ij −

Mij

rij

)

︸ ︷︷ ︸
≡bΦeff (rij)

(3.8)

where rij is in pc and the total mass of the binary system Mij ≡ Mi +Mj in solar masses
M⊙.
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In the absence of any information on the relative velocities of the WB candidates in
our sample, we replace the kinetic term in Eq. 3.3 by a constant average value. In this way
we can use the effective potential Φeff alone as a measure for the binding probability. More
precisely, we take the probability that Φ̂eff , defined in Eq. 3.8, is smaller than a certain
limiting value Φlim as a measure for the probability that a WB candidate is bound and set

wij ∝ P (Φ̂eff < Φ̂lim) ≡
bΦlim∫

−∞

fbΦeff
(Φ) dΦ =

rlim∫

0

frij
(r) dr . (3.9)

Here, rlim ≡ rij(Φ̂lim) and fX is the probability distribution function (PDF) of X. The
weights wij are normalised so that their sum (over all pairs (i, j)) adds up to unity

∑

(i,j)

wij = 1 . (3.10)

We solve Φ̂eff = Φ̂eff(rij) for rij using Maple and find

rij(Φ) =
201/3

6

[(
9Mij +

√
81M2

ij − 20Φ3
)2/3

+ 201/3Φ

]

×
[
9Mij +

√
81M2

ij − 20Φ3
]−1/3

, (3.11)

where we have abbreviated Φ̂eff by Φ. The imaginary parts that appear in Eq. 3.11 cancel,
assuring rij to be real for any Φ.

For every WB candidate we infer an rlim ≡ rij(Φlim) through Eq. 3.11. We take for
every pair the same Φlim, which is chosen to fit the observations (details of the fitting
procedure for Φlim are outlined in Sect. 3.3.3). However, rlim varies from pair to pair as
the total mass Mij varies. The masses of the stars are assigned using the mass-luminosity
relation (MLR) from Kroupa et al. (1993) (KTG93 hereafter) transformed into r-band
magnitudes (see §4.2.2 in Paper I). We now discuss in detail how we determine the PDF
frij

.

3.3.2 Probability distribution of separations

We assume that the errors in absolute magnitude are normally distributed. This as-
sumption is reasonable as long as the uncertainties in apparent magnitudes, σr and σi are
small, i.e. . 0.1 mag, which is mostly the case. We denote with N (x;µ, σ) the value of the
normal distribution with mean µ and standard deviation σ at position x. Then, the PDF
of the absolute magnitude Mr of a star, whose absolute magnitude was determined to be
M r = Mr(ri) is

fMr
(Mr) ≈ N (Mr;M r, σMr

) . (3.12)
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In calculating the standard deviation σMr
we follow J08 and assume that σ2

ri ≈ 2σ2
r and

that the intrinsic scatter of the PPR σ̂Mr
= 0.3 mag leading to

σ2
Mr

≈ 2

(
∂Mr

∂ri

)2

σ2
r + σ̂2

Mr
. (3.13)

Using Eq. 3.2 and neglecting the uncertainty in the apparent magnitude r, we can write
the PDF of the distance D of a star, whose distance was estimated to be D = D(r,M r),
as

fD(D) ≈ fMr
(Mr)

∣∣∣∣
∂Mr

∂D

∣∣∣∣ =
5

D ln 10
N (Mr(r,D);M r, σMr

), (3.14)

with

Mr(r,D) = r − 5 log10

D

10pc
. (3.15)

Since most of our WB candidates are just chance projections, we assume that the distance
estimates of the two members of a WB candidate are to a good approximation independent
from each other. Therefore, we may define the joint PDF of the distances Di and Dj of
the components of a pair (i, j) as the product of the single PDFs

f(Di,Dj)(Di, Dj) ≈ fDi
(Di) · fDj

(Dj) . (3.16)

The Jacobian determinant |J| relates the joint PDFs of the distances to that of sij and rij

f(rij ,sij)(rij , sij) = |J|−1 f(Di,Dj)(Di, Dj) . (3.17)

Here, |J| means the absolute value of the Jacobian determinant. We need to express the
distances Di and Dj as well as the Jacobian determinant |J| in Eq. 3.17 as functions of
rij and sij , respectively. In doing so, we have to distinguish the two cases Di < Dj and
Di > Dj (for Di = Dj we have rij = sij and therefore |J| = 0). For the distances we find
in the case Di < Dj

Di(rij , sij) ≈
sij

θij

(3.18)

and

Dj(rij , sij) ≈ sij

(
1

θij
− θij

2

)
+
rij

θij
|J| . (3.19)

For the other case Di > Dj we simply need to interchange Di and Dj. For the Jacobian
determinant the distinction results just in the opposite sign, which vanishes when taking
the absolute value. We find for both cases

|J| =

∣∣∣∣
∂rij

∂Di

∂sij

∂Dj
− ∂rij

∂Dj

∂sij

∂Di

∣∣∣∣ ≈ θij

√

1 −
(
sij

rij

)2

. (3.20)

We split the joint PDFs of the distances, Eq. 3.16, into a sum to take into account the two
cases

f(Di,Dj)(Di, Dj) = f <
(Di,Dj)

(Di, Dj) + f >
(Di,Dj)

(Di, Dj) , (3.21)
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Figure 3.2: 2PCF as inferred from the restricted total sample with D < 2 000 pc (solid circles, left ordinate)
and the corresponding CDD (open circles, right ordinate). Poisson errors are indicated as vertical lines.
Solid lines show the results from our weighting procedure (see text). Model curves calculated by the
WW-technique are plotted as dashed lines.

where the supscript ‘<’ stands for the case Di < Dj and, consequently, ‘>’ for the case
Di > Dj. To infer the PDF of rij alone, we need to integrate the joint PDF of rij and sij

over all sij

frij
(rij) =

rij∫

0

f(rij ,sij)(rij , sij) dsij . (3.22)

We only need to integrate up to rij because sij ≤ rij . This is the PDF we use to calculate
the weights wij in Eq. 3.9.

3.3.3 The choice of Φ̂lim

The idea is to choose Φ̂lim in such a way that the weighted number of pairs derived
from our WB candidates, i.e. the number of presumably true WB stars as a function of
θij , reproduces the 2PCF as inferred from the restricted total sample. To this end, we
first repeat the 2PCF analysis described in Paper I for the restricted sample to infer the
corresponding best-fit values for the WB number density nWB and the power-law index λ
of the semi-major axis distribution. We find about 1.2 WB stars per 1 000 pc3 and λ ≈ 1.2.
This WB density implies that about 5.0% of all stars having 0.2 < ri < 1.5 mag are a
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Figure 3.3: Distribution of weights, logarithmically binned. The insert shows an enlargement of the peak
region.

member of a WB star. Referred to all stars (no restriction in colour) the fraction amounts
to 2.3%. The relative statistical (2σ) errors of these best-fit values are around 15%.

The WB density is significantly smaller (by a factor 4) as compared to the density
derived from the original total sample in Paper I. The reason for this is the additional
colour cut at ri = 1.5 mag implying Mr . 12 mag (or, using Eq. 40 from Paper I,
MV . 13 mag). This roughly corresponds to the region where the Jahreiß and Wielen
(1997) luminosity function (LF) has its maximum. Therefore, a large fraction of the LF –
including the poorly known faint end – is excluded, resulting in the significant drop of the
WB density. The restriction to distances smaller than 2 000 pc does not significantly affect
the WB density. The power-law index, on the other hand, remains consistent with Öpik’s
(1924) law. In Fig. 3.2 we show the 2PCF w(θij) and the cumulative difference distribution
γ(θij) (CDD; see Eq. 7 in Paper I) derived from the restricted sample together with the
best-fit model curves as dashed lines (cf. Fig. 5 in Paper I).

Due to the normalisation of the weights (Eq. 3.10), the total weighted number of pairs,
summed over 2′′ ≤ θij ≤ 30′′ equals to 1. We therefore introduce a multiplicative factor
K, which scales the total weighted number of pairs to fit the observed total excess of
pairs with respect to a random distribution. Thus, we expect for the restricted sample
K ≈ γ(30′′) ≈ 4 000.
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Similar to the situation in Paper I (see there §4.4), we find ourselves with two free

parameters, K and Φ̂lim that we determine by fitting them to the observed 2PCF by
means of a standard least square algorithm. In doing so, we find

Φ̂lim ≈ −32.2 and K ≈ 3 448 (3.23)

as best-fit values of the two free parameters. Their relative 2σ errors are estimated to
be about 20%. In Fig. 3.2 we also show the 2PCF and the CDD corresponding to these
best-fit values as a solid line. Although inferred from a sample consisting of mostly optical
pairs, the 2PCF and CDD constructed with our weighting procedure fit remarkably well
the observed ones. At angular separations larger than 15′′ the observed 2PCF is slightly
underestimated, resulting in the apparently large discrepancy in the CDD at larger θij . This
discrepancy should, however, not be overemphasised, as the CDD shows the cumulative
differences between the observed 2PCF and the 2PCF corresponding to the best-fit values
in Eq. 3.23. The good agreement with the observation is also supported by the reduced
chi-square1 χ2/ν ≈ 1.25 and the goodness-of-fit Q ≈ 0.22 measured by the incomplete
gamma function (e.g. Press et al. 1992).

Using Eq. 3.8 we see that the best-fit value of Φ̂lim corresponds to Φlim ≈ −1.3 ·
105 (m/s)2. The difference of this value to the critical Jacobi constant Ec can be interpreted
as the average (relative) kinetic energy per mass of a WB star. The associated average
(RMS) relative velocity is

v̄rel =
√

2(Ec − Φlim) . (3.24)

This suggests that Φlim has to be interpreted as an average limiting value as well: it is the
largest value for the effective potential Φeff where two stars with relative velocity v̄rel can
remain bound to each other.

Using again the numerical values in Table 1.2 of Binney and Tremaine (2008) and Eq. 22
of Jiang and Tremaine (2010) we find for the critical Jacobi constant

Ec = − 3

21/3
(ΩgAg)

1/3 (GMij)
2/3

≈ −4.8 · 103
(m

s

)2
(Mij

M⊙

)2/3

(3.25)

and for the average relative velocity

v̄rel ≈ 370
(m

s

)[
1 − 1

27

(Mij

M⊙

)2/3
]1/2

. (3.26)

As all stars in our sample have a spectral type later than the Sun and are consequently also
less massive, we expect the WB candidates’ total masses Mij to be below 2M⊙. Indeed,
the total masses Mij, as inferred from the KTG93 MLR, range from 0.4M⊙ to 2M⊙ with

1As in Paper I, we have ν = 26 degrees of freedom here.
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a median value of about 1M⊙. In this mass range it is safe to ignore the weak mass
dependency of the average relative velocity, giving v̄rel ≈ 370 m/s.

Using Eq. 3.11 and the best-fit value of Φ̂lim (Eq. 3.23), this mass range translates in
a limiting separation range of 0.01 . rlim . 0.06 pc and a median value of approximately
0.03 pc. This limiting separation must be understood in a statistical sense, too. It does
not mean that there are no WB stars with rij > 0.06 pc at all in the Galaxy. It just means
that, to be bound, two stars with relative velocity v̄rel and a total mass of 1M⊙ must have
a separation smaller than 0.03 pc.

The weights wij calculated in this way are shown as a histogram in Fig. 3.3. Most pairs
get a negligible weight, wij < 10−6, in line with the expectation that most pairs in our
sample are optical. The distribution has a prominent peak around wij ≈ 10−4, which is
enlarged in the insert. It is tempting to assign this peak to the presence of WB stars and
the ‘background’ distribution rising up to ∼800 (or up to ∼100 with the binning used in
the insert) to the presence of optical pairs. There are 4 751 pairs with wij > 10−5 whose
weights sum up to ∼0.996, i.e. these 4 751 pairs constitute about 99.6% of the total weight
and, hence, dominate the distributions we infer in the next Section as well as in Sects. 3.4
and 3.4.4.

For the purpose of follow-up studies and cross identifications we list our top WB can-
didates sorted for their weights in Table 3.1. An extended table including the top 5 000
pairs is available at CDS.

3.3.4 Distribution of projected separations

As a further test of our weighting procedure, we compare the weighted observed2 dis-
tribution of projected separation sij with that expected from the Wasserman-Weinberg
(WW) model (Wasserman and Weinberg 1987, see also §4 in Paper I). The average pro-
jected separation 〈sij〉 is related to the average separation 〈rij〉 by (e.g. Yoo et al. 2004)

〈sij〉 =
π

4
〈rij〉 . (3.27)

This allows us to translate the range in rlim (see the previous Section) into 0.008 . slim .

0.05 pc, which is the range where we expect the weighted distribution sij to drop to zero.
Let us denote the weighted distribution of sij by ψobs(sij) and that predicted by the

WW-model ψWW(sij). In Fig. 3.4 we show ψobs and ψWW as solid and dashed line, respec-
tively. If our weighting procedure is correct, ψobs should agree with ψWW at least up to
sij ≈ 0.008 pc. We have therefore normalised ψobs so that the number of observed WB
stars with sij < 0.008 pc agree with the expectation of the WW-model:

0.008 pc∫

0

ψobs(sij) dsij =

0.008 pc∫

0

ψWW(sij) dsij . (3.28)

2We use the term ‘observed’ for distributions not corrected for selection effects.
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Figure 3.4: Observed distribution of projected separations s inferred with our weighting procedure (solid
line). Poisson errors are indicated as vertical lines. The dashed line shows the theoretical distribution
expected from the WW-model. The slim-range (see text) is indicated as dotted vertical lines.

From Fig. 3.4 we see that the overall agreement for sij < 0.008 is quite good given the
approximative character of our study. While the (dashed) model curve lies within the
Poisson errors (indicated by vertical lines), we note an overestimation at the smallest
projected separations compensated by an underestimation in the range 0.005 . sij . 0.008
pc. The subsequent deviation from the model prediction is expected, because we enter the
slim-range indicated by the two vertical dotted lines. The sharp drop of ψWW beyond
sij ≈ 0.02 pc is due to the cut in distances we have adopted at Dmax = 2 000 pc. In the
angular separation range we study, 2′′ ≤ θij ≤ 30′′, the farthest pairs at D = Dmax may
have a projected separation sij between 0.02 pc and 0.3 pc to be observed – the range
where ψWW drops to zero.

All in all, the good agreement between ψobs and ψWW at sij . 0.008 pc shows that
our weighting procedure is essentially correct, encouraging us to continue our statistical
analysis of the properties of WBs. On the other hand, Fig. 3.4 also shows that we gain no
information at all for pairs with projected separations beyond 0.06 pc. Not because such
pairs do not exist, but because pairs with sij & 0.06 pc must have relative velocities smaller
than v̄rel to be bound. Consequently, these pairs get vanishing weights in our procedure.
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3.4 Results

All distributions of physical quantities we infer in the following, are based on the dis-
tribution of the colour index ri. The absolute magnitude is determined from the PPR
Mr = Mr(ri) (Eq. 3.1), which are then transformed into masses by the KTG93 MLR.
Before drawing any conclusions from the colour distributions inferred by our weighting
procedure, they have to be corrected for observational bias.

3.4.1 Corrections for selection effects

Our restriced sample is limited by apparent magnitudes and therefore subject to Malmquist
bias (e.g. Binney and Merrifield 1998, §3.6.1): luminous stars can be observed out to larger
distances than intrinsically faint stars. Consequently, bright stars, having a bluer colour
index, are over-represented in magnitude-limited samples. Thus, the observed colour dis-
tributions differ from the true distributions so that it is necessary to apply a correction
that takes into account this selection effect.

The basic idea of the correction we adopt is that the stars of every colour bin have to
be normalised to the same (arbitrary) volume. Because our sample lies in the direction
of the NGP with typical distances of the order of the scale height of the thick disk (∼900
pc), we must also take into account the stellar density gradient towards the NGP. We
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use the same stellar density distribution as in Paper I (§4.2.1) based on the bias-corrected
structure parameters from J08.

Let Nobs(ri) be the number of stars observed in the ri-bin that are a member of a WB
star. As before, ‘observed’ stands for “weighted, but not corrected for selection effects”.
Then the true number of WB components in the ri-bin is

Ntrue(ri) = Nobs(ri) · Fcorr(ri) , (3.29)

with an appropriate correction function Fcorr. To infer Fcorr we again rely on the WW-
model. We calculate the ratio of the expected true number of stars in each bin NWW

true (ri)
to the expected observed number of stars NWW

obs :

Fcorr(ri) ≡
NWW

true (ri)

NWW
obs (ri)

. (3.30)

Recalling Eq. 43 of Paper I, we write the observed number of stars in a ri-bin being a
member of a WB as

NWW
obs (ri) = nWBΩ

θmax∫

θmin

dθ

D2(θ)∫

D1(θ)

dDD3ρ̃(D)Q(Dθ)

×
M2(D)∫∫

M1(D)

dMAdMBΦ̃(MA)Φ̃(MB)δ(MA −Mr(ri)) (3.31)

with

D1(θ) ≡ max(〈s〉min/θ,Dmin(ri)) (3.32)

D2(θ) ≡ min(〈s〉max/θ,Dmax(ri), Dmax) (3.33)

where, as in Paper I, 〈s〉min = 0.98amin = 9.8 · 10−4 pc and 〈s〉max = 0.98aT (here, the tidal
limit of the semi-major axis is aT ≈ 1.2 pc). The distance range [Dmin(ri), Dmax(ri)] in
which a star of a given colour index ri can be observed is defined by the range in apparent
(r-band) magnitude [mmin, mmax] we have chosen for our restricted sample and the PPR
(Eq. 3.1)

Dmin(ri) = 10(mmin−Mr(ri)+5)/5 pc (3.34)

Dmax(ri) = 10(mmax−Mr(ri)+5)/5 pc . (3.35)

Here, we have mmin = 15 mag and mmax = 20.5 mag. Finally, the integral over D is
constrained to distances smaller than Dmax = 2 000 pc (see Sect. 3.2). To take into account
the range in absolute magnitude [Mmin,Mmax] corresponding to the adopted colour cuts
(here, Mmin ≈ 5.2 mag and Mmax ≈ 12 mag; see again Sect. 3.2), we furthermore define

M1(D) ≡ max(Mmin(D),Mmin) (3.36)

M2(D) ≡ min(Mmax(D),Mmax) (3.37)
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where

Mmax(D) = mmax − 5 log10(D/10 pc) (3.38)

Mmin(D) = mmin − 5 log10(D/10 pc) . (3.39)

The delta-function in Eq. 3.31 makes sure that one component of each WB star (here we
arbitrarily choose component A) falls into the corresponding ri-bin. If Mr(ri) is within the
integration limits, we may replace the integral over MA by the value of the (normalised)
LF at Mr(ri). In doing so, we find for the number of stars being a component of a WB
star and having a colour index within the ri-bin

NWW
obs (ri) ∝

θmax∫

θmin

dθ

D2(θ)∫

D1(θ)

dDD3ρ̃(D)Q(Dθ)

M2(D)∫

M1(D)

dMBΦ̃(MB) (3.40)

if M1(D) < Mr(ri) < M2(D) and NWW
obs (ri) = 0 else. The proportionality constant in

Eq. 3.40 reads nWBΩΦ̃(Mr(ri)).
The true number of stars in a ri-bin expected from the WW-model can be regarded

as the limiting case of Eq. 3.40 where mmin → −∞ and mmax → +∞. Proceeding in the
same way as before, we find

NWW
true (ri) ∝

θmax∫

θmin

dθ

min(〈s〉max/θ, Dmax)∫

〈s〉min/θ

dDD3ρ̃(D)Q(Dθ) (3.41)

if Mmin < Mr(ri) < Mmax and NWW
true (ri) = 0 else, where we have used the normalisation

of the LF
Mmax∫

Mmin

Φ̃(M) dM = 1 . (3.42)

The proportionality constant in Eq. 3.41 is, of course, the same as in Eq. 3.40.
If either NWW

obs (ri) or NWW
true (ri) is zero, we set the correction function Fcorr(ri) = 0.

Otherwise Fcorr(ri) is the ratio as defined in Eq. 3.30. We see that Fcorr is independent
from the WB number density nWB, the solid angle Ω of our sample as well as the value of
the LF at Mr(ri). It does, however, depend on the power-law index λ of the semi-major
axis distribution through the reduced distribution of projected separations Q(s) (see Eq. 23
in Paper I).

In Fig. 3.5 the correction function for binary stars Fcorr is plotted as a solid line. By
definition, Fcorr(ri) ≥ 1 for all ri, because the observed number of stars in a given volume
is always a lower limit to the true number of stars of that volume. The correction function
Fcorr has a minimum around ri = 0.8 mag and rises towards redder as well as bluer colours.
The reason for the increase at bluer colour is the lower apparent magnitude limit at r = 15
mag excluding bright stars that are too close: According to the PPR (Eq. 3.1), stars at
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the blue end (ri = 0.2 mag) have an absolute magnitude of Mr ≈ 5.4 mag. To have an
apparent magnitude fainter than r = 15 mag, they have to be farther than 800 pc. The
stars at the blue end are, however, over-represented compared to those at the red end
(ri = 1.5 mag). The reddest stars are simply too faint to be observed at distances larger
than about 500 pc given the upper limit in apparent magnitude at r = 20.5 mag.

We discuss at this point the correction for selection effects of field stars. Relying on von
Seeliger’s (1898) formula (see also Karttunen et al. 1996, §18.2), we write for the number
of observed stars (not necessarily in a WB) in the ri-bin

nWW
obs (ri) = n′

∗Ω

min(Dmax(ri),Dmax)∫

Dmin(ri)

dDD2ρ̃(D)

×
M2(D)∫

M1(D)

dMΦ̃(M)δ(M −Mr(ri)) , (3.43)

where n′
∗ is the local stellar number density of the stars in our sample as inferred from the

Jahreiß and Wielen LF Φ(M)

n′
∗ ≡

Mmax∫

Mmin

Φ(M) dM ≈ 0.048 pc−3 . (3.44)

As before, we have

nWW
obs (ri) = n′

∗ΩΦ̃(Mr(ri))

min(Dmax(ri),Dmax)∫

Dmin(ri)

dDD2ρ̃(D) (3.45)

if M1(D) < Mr(ri) < M2(D) and nWW
obs (ri) = 0 else. Consequently, the number of true

stars in the ri-bin is then

nWW
true (ri) = n′

∗ΩΦ̃(Mr(ri))

Dmax∫

0

dDD2ρ̃(D) (3.46)

if Mmin < Mr(ri) < Mmax and nWW
true (ri) = 0 else.

In analogy with the correction function for the WB stars, we define

fcorr(ri) ≡
nWW

true (ri)

nWW
obs (ri)

(3.47)

if neither nWW
obs (ri) nor nWW

true (ri) equals zero. Otherwise, fcorr(ri) = 0. We show the
correction function of the Galactic field stars in Fig. 3.5 as a grey dash-dotted line. Of
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course, again by definition, fcorr(ri) ≥ 1 for all ri. The overall shape of fcorr is similar to
that of the WB stars, Fcorr.

The comparison of the bias corrected colour distribution of all stars to that of the WB
stars would not be ‘fair’, because not in every distance the whole projected separation
range [〈s〉min, 〈s〉max] can be explored given the range in angular separation [θmin, θmax].
For example, in a distance of 1 kpc we can only explore the range 0.01 pc . s . 0.15 pc.
Thus, stars in a certain distance should be compared only to those WB stars that have
a projected separation in the range corresponding to that distance. Using the reduced
distribution of projected separations Q(s), we may express the fraction of all WB stars
with projected separations s in [〈s〉min, 〈s〉max] that can be observed as

ffrac(D) ≡
min(θmaxD, 〈s〉max)∫

max(θminD, 〈s〉min)

Q(s) ds ≤ 1 . (3.48)

The colour index ri corresponds to the distance range [Dmin(ri), Dmax(ri)]. So, we find for
the fraction of observable WB stars with colour ri

ffair(ri) ≡




Dmax∫

0

ffrac(D) dD




−1

·
min(Dmax(ri), Dmax)∫

Dmin(ri)

ffrac(D) dD ≤ 1 . (3.49)

The corrected number of field stars in the ri-bin is then

ntrue(ri) = nobs(ri) · fcorr(ri) · ffair(ri) ≡ nobs(ri) · F̃corr(ri) , (3.50)

where fcorr corrects for Malmquist bias and ffair makes sure that the comparison between
the colour distribution of WB stars and field stars is ‘fair’ in the sense just described.

In Fig. 3.5 we show F̃corr – the correction function for the field stars – as (black) dash-
dotted line. Due to the ‘fairness factor’, ffair, this correction function can be smaller than
1, as it is the case here for ri . 1 mag. The difference between fcorr and F̃corr is smallest
around ri ≈ 0.8 mag, while it increases towards both redder and bluer colours. The
‘fairness correction’ is important, especially at the red end.

3.4.2 Corrected colour distributions

We first construct the (corrected) joint probability density p(ri1, ri2), which is the
probability density that a WB has its primary component in the ri1-bin and the secondary
in the ri2-bin. Assuming that the correction function Fcorr for the primary component is
independent from that of the secondary, we have

Fcorr(ri1, ri2) = Fcorr(ri1) · Fcorr(ri2) . (3.51)
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Figure 3.6: Corrected joint probability density of primary (index 1) and secondary (index 2) WB compo-
nents. The relative error in each bin is of the order of 5%.

Let Nobs(ri1, ri2) be the weighted observed counts in a (ri1, ri2)-bin, i.e. the weighted
number of observed pairs with a primary component whose colour falls in the ri1-bin and
a secondary component with colour in the ri2-bin

Nobs(ri1, ri2) ≡
∑

(ri1,ri2)-bin

wij ≤ 1 . (3.52)

These are less than unity because of the normalisation of the weights (Eq. 3.10). The true
weighted counts are then

Ntrue(ri1, ri2) = Nobs(ri1, ri2) · Fcorr(ri1, ri2) , (3.53)

which we expect to be proportional to the true number of WB stars in a (ri1, ri2)-bin.
The bias corrected joint probability density that a WB star has a primary component with
colour ri1 and a secondary with colour ri2 is then

p(ri1, ri2) =
Ntrue(ri1, ri2)

(∆ri)2
∑

ri1, ri2

Ntrue(ri1, ri2)
, (3.54)

where ∆ri = 0.1 mag is the width of a ri-bin and the sum goes over all combinations of
ri1 and ri2. The resulting joint probability density map is shown in Fig. 3.6, where the ri
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Figure 3.7: Corrected colour distribution (probability density) of primary WB components (histogram).
The error bars reflect statistical uncertainties. The (corrected) distribution expected from random pairing
of field stars is shown as grey circles.

colour index of the primary component (index 1) is plotted on the abscissa and that of the
secondary (index 2) on the ordinate.

To estimate the statistical errors, we rely on the unweighted number of pairs, Ñobs(ri1, ri2),
giving the number of WB candidates in a (ri1, ri2)-bin. Throughout this work, we quote
statistical (Poissonian) errors only. Uncertainties stemming from the PPR, the Galactic
model, from observations or any other source are not included. Our error estimates must
therefore be regarded as a lower limit to the true uncertainties. The statistical error of a
bin with Ñobs(ri1, ri2) counts is

δÑobs(ri1, ri2) =

√
Ñobs(ri1, ri2) . (3.55)

Then, the statistical errors of the weighted observed counts are

δNobs = δÑobs ·
Nobs

Ñobs

= Nobs ·
(
Ñobs

)−1/2

(3.56)

and, consequently, the errors of the true weighted counts

δNtrue = δNobs · Fcorr = Ntrue ·
(
Ñobs

)−1/2

. (3.57)
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Figure 3.8: Corrected colour distribution (probability density) of secondary WB components (histogram).
The error bars reflect statistical uncertainties. The (corrected) distribution expected from random pairing
of field stars is shown as grey circles.

Finally, we estimate the relative statistical error of the joint probability density by

δp

p
≈
(
Ñobs

)−1/2

, (3.58)

which we find to be of the order of 5%.
The most prominent feature in Fig. 3.6 is the maximum density around ri1,2 ≈ 1.5 mag

reflecting the peak of the LF at Mr ≈ 11 mag. Another slight overdensity can be spotted
at the blue end around ri1,2 ≈ 0.3 mag. This overdensity can be attributed to the Wielen
dip (Wielen et al. 1983) that depletes the counts in the surrounding redder bins.

From the joint probability density p(ri1, ri2) we can infer the colour distributions of the
WB members. Let p1(ri) be the probability density of finding a primary WB component
in a ri-bin and p2(ri) analogously for a secondary component. Then

p1(ri) = ∆ri
∑

ri2

p(ri, ri2) (3.59)

and
p2(ri) = ∆ri

∑

ri1

p(ri1, ri) . (3.60)

The colour distributions p1 and p2 are shown in Figs. 3.7 and 3.8, respectively, as solid
lines. While the colour distribution of secondaries rises monotonically towards redder
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Figure 3.9: Corrected colour distribution (probability density) of all WB components (histogram). The
error bars reflect statistical uncertainties. The corrected distribution pall of the 456 089 stars in our
restricted sample is shown as grey circles. The grey triangles show the Jahreiß and Wielen LF transformed
into r − i.

colour (Fig. 3.8), that of the primaries is fairly constant for ri . 1 mag and drops only for
redder colour indices (Fig. 3.7). The statistical uncertainties are calculated according to

δp1(ri) =

√∑

ri2

δp(ri, ri2)2 (3.61)

and

δp2(ri) =

√∑

ri1

δp(ri1, ri)2 . (3.62)

In the same Figs. 3.7 and 3.8, we also show as grey dashed lines the colour distributions
of primaries and secondaries that are expected from random pairings of the field stars.
These expected distributions are generated by a simple Monte Carlo simulation, drawing
pairs from the corrected colour distribution pall of all the 456 089 stars in our restricted
sample at random. (For consistency reasons we find it more appropriate to use pall instead
of the Jahreiß and Wielen LF.)

Looking at Fig. 3.7, we note a deficiency of blue (ri . 1 mag) primary components
compared to the expectation from random pairing of field stars, compensated by a relative
excess of red (ri & 1.2 mag) primaries. The errors are, however, quite large, especially
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Figure 3.10: Normalized (excess) abundance of WBs relative to field stars, as a function of r− i. The error
bars reflect statistical uncertainties. The horizontal dashed line indicates the equal probability density.

at the red end. The colour distribution of the secondaries (Fig. 3.8) agrees well with the
prediction from random pairing of field stars. A slight excess at the bluest colours and a
small deficiency at redder colours (ri & 1.1 mag; except for the reddest bin) is, however,
present, in contrast to the findings for the primaries.

Next, we consider the probability density pri(ri) that any WB component falls in a
ri-bin

pri(ri) ∝ p1(ri) + p2(ri) − p(ri, ri)∆ri . (3.63)

Here, the last term assures that the probability that primary and secondary components fall
in the same colour bin (the diagonal in Fig. 3.6) is not counted twice. The proportionality
constant is fixed by the normalisation

∆ri
∑

ri

pri(ri) = 1 . (3.64)

The uncertainty in pri is

δpri(ri) ∝
√
δp2

1(ri) + δp2
2(ri) − δp2(ri, ri) , (3.65)

where the last term is subtracted because otherwise it would be included twice: once in
δp1 and once δp2 (see Eqs. 3.61 and 3.62). The proportionality constant is, of course, the
same as in Eq. 3.63.
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We show pri in Fig. 3.9 as histogram together with the Jahreiß and Wielen LF trans-
formed into ri as grey triangles and pall as circles. If the components of the WB stars were
drawn randomly from the LF, we would expect pri to resemble the LF and, equivalently,
pall. We see in Fig. 3.9 that all the three curves are quite similar and most deviations of
pri from the LF or pall at intermediate colours are within the error bars. At the blue end
pri seems to slightly underestimate the LF while it is in line with pall, whereas at the red
end pri agrees well with the Jahreiß and Wielen LF but appears to overestimate pall. The
underestimation of LF at the blue end might be due to the cut at g − r = 0.5 mag that
excludes also some stars with colour indices up to ri ≈ 0.3 mag because of the spread of
the stellar locus (see Fig. 2 of Paper I).

The reddest stars with ri & 1.4 mag appear to reside more likely in a WB than it would
be expected by a random pairing. But given the large uncertainties at the red end (blown
up by the correction function Fcorr), no firm conclusion can be drawn.

The ratio of pri and pall is proportional to the excess abundance of WBs relative to field
stars as a function of colour, given as probability density pWB(ri):

pWB(ri) ∝ pri(ri)

pall(ri)
. (3.66)

The proportionality constant is again fixed by the normalisation of the probability density

∆ri
∑

ri

pWB(ri) = 1 . (3.67)

Thus, we can infer pWB from Fig. 3.9 simply by dividing pri through pall and renormalising
the area under the resulting curve to unity, as it was already practiced by Sesar et al. (2008).
We show pWB in Fig. 3.10. The dashed horizontal line indicates the distribution we would
have if pri = pall for all ri. As a direct consequence of the good agreement between pri and
pall, the probability pWB that a star chosen by chance is a member of a WB system appears
to be independent of colour. This was also found by Sesar et al. (see their Fig. 17). This
good agreement between pri and pall indicates again (as did Fig. 3.9) that the deviations of
the primaries and secondaries alone, shown in Figs. 3.7 and 3.8, largely cancel each other.
As mentioned, there is, however, a barely significant excess at the red end. Can this excess
be attributed to certain combination of primary and secondary colour index? To answer
this question we calculate the conditional probability density in the next Section.

3.4.3 Conditional colour distributions

The conditional probability density p(riB| riA) that a WB component with colour riA
has a companion with colour riB, is defined by

p(riB| riA) ≡ p(riA ∩ riB)

pri(riA)
. (3.68)

Here, p(riA ∩ riB) is the joint probability density that one component of a WB star (either
primary or secondary) has colour index riA and the other component has riB. It can be
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Figure 3.11: Conditional probability density that a WB component within the indicated riA-colour range
has a companion with colour index riB . The error bars reflect statistical uncertainties.

expressed as the sum of the probability that a WB primary component with colour riA has
a (secondary) companion with colour riB and the probability that a WB secondary with
a colour index riA has a (primary) companion with colour riB

p(riA ∩ riB) ∝ p(riA, riB) + p(riB, riA) − p(riA, riA)δriA,riB , (3.69)

where the last term with the Kronecker delta assures that the joint probability densities are
not counted twice when riA = riB. In terms of Fig. 3.6, the conditional probability density
p(riB| riA) can be inferred by adding the column ri1 = riA to the row ri2 = riA, while
paying attention that no cell is counted twice. Due to the normalisation of the conditional
probability density

∆ri
∑

riB

p(riB| riA) = 1 (3.70)

we also have

pri(riA) = ∆ri
∑

riB

p(riA ∩ riB)

∝ ∆ri
∑

riB

p(riA, riB) + ∆ri
∑

riB

p(riB, riA)

−p(riA, riA)∆ri , (3.71)
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Figure 3.12: Normalised excess abundance (probability density) of WBs with one component in colour
index bin riA and the other in riB relative to field stars in colour index bin riB. The error bars reflect
statistical uncertainties.

which is consistent with Eq. 3.63.
The conditional probability densities p(riB| riA) for various ranges in riA are shown in

Fig. 3.11. If each component of a WB is chosen at random from the LF, i.e. from pall,
every curve in Fig. 3.11 should resemble pall. At first glance it becomes, however, evident
that the conditional colour distribution is not the same for every range in riA. While the
conditional probability density rises towards redder colours like the LF for riA & 0.7 mag,
it is almost flat in the range 0.5 < riA < 0.7 mag and shows even a falling tendency towards
red colours for the bluest range in riA examined (0.2 < riA < 0.5 mag).

To illustrate the deviation from the pall more clearly, we divide the conditional proba-
bility densities through pall and define in analogy to Eq. 3.66

pWB(riB| riA) ∝ p(riB| riA)

pall(riB)
. (3.72)

This gives the excess abundance (probability density) of WBs with one component in colour
index bin riA and the other in riB relative to field stars in colour index bin riB.

The resulting curves are shown in Fig. 3.12. We see that at intermediate colour indices
(0.5 < riA < 1.3 mag), pWB(riB| riA) agrees well with pall within the error bars. The bluest
(0.2 < riA < 0.5 mag) and the reddest (1.3 < riA < 1.5 mag) colours, however, show a
(barely) significant deviation. While the bluest WB components seem to have an excess in
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Figure 3.13: Probability densities of WB mass ratios (histogram). The indicated range of the primary mass
is in solar masses M⊙. The error bars reflect statistical uncertainties. The corresponding distributions
expected from random pairing of field stars are shown as (grey) circles.

blue companions relative to pall at the expense of red companions, the opposite is true for
the reddest WB components. So, it seems that at the extremes of the colour range studied,
companions with similar colour are preferred and that the (barely significant) excess we
noted in Fig. 3.10 is largely due to pairs where both components have ri & 1.2 mag (see,
however the discussion in §3.5).

3.4.4 Distribution of mass ratios

Using the KTG93 MLR, we assign a mass to each star in the restricted total sample a
mass. In analogy to Eq. 3.54, we then infer the (corrected) probability density p(M1,M2)
that a WB system has a primary component with mass M1 and a secondary with mass M2.
To express the correction function Fcorr, (Eq. 3.30), as a function of mass M, we construct
a ‘colour-mass relation’, ri(M), by combining the PPR (Eq. 3.1) and the KTG93 MLR.
We express ri(M) as a sixth order polynomial in M measured in solar masses M⊙:

ri(M) ≈ 92.2M6 − 370.5M5 + 586.7M4 − 461.8M3

+188.2M2 − 39.6M + 4.8 , (3.73)

which is valid in the range 0.2 . M . 0.85M⊙, corresponding to 0.2 ≤ ri ≤ 1.5 mag.
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The probability density p(M1,M2) can be used to infer the distribution of the mass
ratio q ≡ M2/M1 ≤ 1 of WB stars via (e.g. Warner 1961; Tout 1991)

pq(q) =

Mmax∫

Mmin

M1 p(M1, qM1) dM1 . (3.74)

The integration limits, i.e. the range of the primary mass M1, and the range of mass
ratios q studied, must be chosen with some caution: the red end of the colour range under
consideration here corresponds to a minimum mass of about 0.2M⊙ and the mass of any
WB component can not be below that value. Companions to low-mass primaries have
therefore a restricted range of possible masses causing the mass-ratio distribution pq to be
biased towards high values (see, e.g., §8.4 in Fischer and Marcy 1992). To overcome this
problem we restrict both the range of M1 and the studied range of q. We set somewhat
arbitrarily 0.5 < M1 < 0.85M⊙, defining the integration limits in Eq. 3.74, and 0.4 <
q < 1. These restrictions make sure that qM1 ≥ 0.2M⊙ and avoid a possible bias of the
mass-ratio distribution towards unity.

The resulting mass-ratio distribution is shown in Fig. 3.13 (left) as histogram. The
distribution is quite flat for q < 0.8 and shows a slight enhancement for larger q. This
is quite different from the expectation from random pairing (plotted as circles) showing
a decreasing distribution for q & 0.7 with increasing q, but is in line with the previous
Section where we found a deficiency of pairs whose components have a different colour
(∆ri & 1 mag, corresponding to ∆M & 0.5M⊙), compensated by an excess of pairs with
similar colour (i.e. similar mass).

To further explore the mass-ratio distribution and to get an insight into the pairing
mechanism, we show its variation with primary mass in Fig. 3.13 (middle and right), as
suggested by Kouwenhoven et al. (2009). The mass-ratio distribution of the less massive
half of primary components (0.5 < M1 < 0.68M⊙) is pretty similar to that shown in
Fig. 3.13 (left). The difference to the random distribution is, however, somewhat less
pronounced. The more massive half, on the other hand, shows a slightly increasing trend
over the hole q-range, whereas a strong discrepancy with the distribution expected from
random pairing is evident.

3.4.5 Distribution of secondary masses

In Fig. 3.14 we present the distribution of secondary masses for pairs with a primary
mass larger than 0.5M⊙ as a histogram. It has a broad maximum around 0.45M⊙ and
declines rapidly, approximately as M−4, towards larger masses. This decline is considerably
steeper than Salpeter’s (1955) initial mass function (IMF) with M−2.35, which is found to
give a good description for M > 0.5M⊙ (e.g. Kroupa 2008). Note that below M ≈ 0.8M⊙,
stars are still on the (initial) main sequence, anyway. The decrease towards low masses,
on the other hand, is much shallower.
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Figure 3.14: Mass distribution of secondaries with a primary component heavier than 0.5M⊙ (histogram).
The error bars reflect statistical uncertainties. The (arbitrarily normalised) distribution of primary masses
are shown as grey sqares. For comparison are plotted also the mass distribution of field stars (circles) as
well as the Jahreiß and Wielen LF transformed into a mass function using the KTG93 MLR (triangles).

For comparison, we also show the (arbitrarily normalised) distribution of primary
masses (squares), the mass distribution of the field stars (circles) and the Jahreiß and Wie-
len LF (triangles) transformed into a mass distribution using the KTG93 MLR. Firstly, we
note that the distribution of secondary masses agrees with that of the field stars, suggesting
that the secondary masses are drawn from the field population. Secondly, the decline of
the distribution of primary masses shows a decline towards high masses of similar steepness
as the distribution of secondary masses and that of the field stars, suggesting that primary
masses larger than 0.5M⊙ are drawn from the field population as well. Thirdly, unlike the
distribution of secondary masses, the mass distribution derived from the Jahreiß and Wie-
len LF (triangles) has no maximum around 0.45M⊙ but shows an overall decreasing trend
towards high masses, where the decline for M > 0.5M⊙ is in agreement with Salpeter’s
IMF. Given the large uncertainties of the secondary-mass distribution and the relatively
narrow mass range under consideration (0.2 <M < 0.85M⊙), any apparent inconsistency
with the canonical stellar IMF (e.g. Kroupa 2008) should probably not be overemphasised.
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Figure 3.15: Probability density of WBs as a function of r − i in the range 0.2 < r − i < 1.1 mag relative
to the results of Gould et al. (1995). The error bars reflect statistical uncertainties. The horizontal dashed
line indicates the equal probability density.

3.5 Discussion

3.5.1 Colour distributions

The distribution of colours of WB candidates in a volume-complete sample was studied
in detail by Sesar et al. (2008) (see their §4.2). As we take quite a different approach to
construct the colour distributions, while using similar data from the SDSS and the same
PPR, a comparison with Sesar et al. should be a valuable consistency test. The joint
colour distribution in Fig. 3.6 can be directly compared to Fig. 15 (bottom) of Sesar et al.
We note a good overall agreement. A closer look reveals, however, a difference: Sesar
et al. find a local maximum around ri1,2 ≈ 1.0 mag, beyond which the probability drops
towards redder bins. According to Sesar et al., their sample is complete up to g − i = 2.8
mag, which corresponds to ri ≈ 1.4 mag (using Eq. 10 from Sesar et al.). Thus, the drop
beyond the maximum in Sesar et al. should be real. We, on the other hand, find that the
probability density continues to rise up to the red end at ri ≈ 1.5 mag. The LF does not
seem to have any significant drop in the range corresponding to 1.0 . ri . 1.5 mag either
(see the grey dashed line in Fig. 3.9). However, given the uncertainties of the Galactic
model and the PPR as well as the heuristic method we use to transform the LF from MV

into Mr (see §4.2.2 of Paper I), this difference is probably not significant.
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Performing a “search for faint, common proper motion companions of Hipparcos stars”,
Lépine and Bongiorno (2007) found a clear deficiency of secondaries relative to the single
star field population in the low-luminostiy range 8 < MV < 14 mag, which “rules out the
idea that the luminosity function of the secondaries is comparable to the field luminosity
function”. This low-luminosity range corresponds to 0.4 . ri . 1.6 mag. The deficiency of
secondaries found in the present study (evident from Fig. 3.8), on the other hand, occurs
in a narrower colour range and is much less significant. We therefore conclude that we can
not fully reproduce this particular result from Lépine and Bongiorno.

At first sight, the (barely significant) excess of red pairs at ri ≈ 1.5 mag evident from
Fig. 3.10 appears to be contradictory to the findings of Gould et al. (1995). Based on
a sample of 13 WB stars discovered in the HST Snapshot Survey, they find that these
binaries “have bluer colors than would be expected for random pairs of field stars”. The
stars observed in the Snapshot Survey typically have absolute magnitudes between 6 and
11 mag, corresponding to 0.2 . ri . 1.1 mag. Hence, the Snapshot sample is not sensitive
to the colour range of our reddest bins. We recalculated pWB after having excluded the
bins with ri > 1.1 mag, while keeping the same weights wij as before. The resulting
probability density is shown here in Fig. 3.15. Again the distribution is consistent, within
the uncertainties, with the equal probability density (the dashed horizontal line), but we
do note a declining trend towards redder colours. So, in the colour range 0.2 . ri . 1.1
mag blue stars have a slightly larger probability to be a member of a WB, in line with the
findings of Gould et al. This also shows that the probability for an arbitrary star to reside
in a WB depends somewhat on the colour range under consideration.

The conclusion we draw from Fig. 3.12 that WB components at the blue and the red
end have a preference for companions of similar colour stands, however, not on a very firm
basis, given the quite large uncertainties, especially for the red pairs. More significant
than the excesses of red and blue pairs, respectively, is the apparent absence of pairs with
very different colours: at the bluest riA-range we note a lack of red companions relative
to the LF, i.e. to pall. Consequently, blue companions are missing in the reddest riA-
range. This suggest that pairs with a large colour difference, |riA − riB| & 1 mag, are
underrepresented compared to the expectation from random pairing of field stars. This
“apparent preference for similar brightness” was already noted by Gould et al. (1995).
Their sample was, however, too small to make a secure statement.

3.5.2 Mass ratios and secondary masses

Duquennoy and Mayor (1991) found a mass-ratio distribution with a declining trend
towards equal mass binaries for every period range examined, which is not necessarily
inconsistent with a flat distribution, though. Their study is, however, restricted to solar-
type stars (spectral range F7 to G9), whereas our sample includes stars of spectral type
between G5 and M5 (0.2 <M < 0.85M⊙). As late type stars outnumber those of earlier
type, we expect that the mass-ratio distribution we have inferred is dominated by later
types. Indeed, Fischer and Marcy (1992) found a flat mass-ratio distribution in the region
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q > 0.4 for M dwarf binaries with separations smaller than 104 AU, more in line with our
results. Most recently, and in accord with our study, Dhital et al. (2010) found a mass-ratio
distribution rising towards equal masses for binaries with a separation between 103 and
105 AU and a spectral type between K5 and M5. A similar mass-ratio distribution with a
peak at q ≥ 0.8 was found much earlier by Reid and Gizis (1997). However, most of the
binaries in their sample had separations smaller than 200 AU, making a direct comparison
difficult.

Both Duquennoy and Mayor and Fischer and Marcy found that the distribution of
secondary masses is similar to the field mass function, in general agreement with our
results. The former authors found a secondary-mass distribution continuously increasing
towards small secondary masses, whereas the companion mass distribution for M dwarfs
derived by Fischer and Marcy extending from 0.075 to 0.375 M⊙ is roughly flat. This is
consistent with our secondary-mass distribution in Fig. 3.14 which is also roughly flat in
the range M2 < 0.4M⊙. But since our distribution is for pairs with primaries of higher
mass (M1 > 0.5M⊙), whereas Fischer and Marcy included only primaries with masses
between 0.3 and 0.55 M⊙, a direct comparison is not straightforward. The decline of the
secondary-mass distribution towards large masses is in line with the results of Duquennoy
and Mayor, but again, because of the different range in primary mass and separation
probed, a comparison must be done with care.

3.5.3 Comparison with theoretical predictions

Using the largest hydrodynamical simulation to date, Moeckel and Bate (2010) recently
studied the formation of single and multiple stars, including WBs, in the expanding halo
of a star cluster after gas dispersal. They find a relatively flat mass-ratio distribution for
binaries with a primary mass M1 > 0.5M⊙, especially for q > 0.4, whereas binaries with
0.1 <M1 < 0.5M⊙ show a increasing trend towards high mass ratios over the whole range
in q. More importantly, the outcome of their simulation suggests that binaries with small
separations tend to have large mass ratios, whereas WB stars preferably consist of unequal
mass components. Taken at face value, this would clearly contradict our findings. A direct
comparison with the simulation by Moeckel and Bate is, however, difficult for the following
two reasons:

i) their simulation has been stopped after 10 Myr, while the field WB population
we study is, on average, much older – of the order of Gyr. So, there is an (at present
unavoidable) temporal gap between the simulation and the observations, during which the
properties of the field binaries evolve under the influence of dynamical encounters with
other stars, giant molecular clouds and (possibly) MACHOs. Regarding the mass-ratio
distribution, low-q binaries are indeed more easily disrupted by gravitational encounters
than are equal-mass binaries (Kroupa 1995).

ii) the results of the simulation are inferred using one definite set of initial conditions
for one collapsing molecular cloud (see Bate 2009, §2.3), whereas the field population must
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be regarded as the result of many collapsed molecular clouds with a whole range of different
properties.

The dependence of wide (a > 103 AU) binary properties on the initial conditions
of a dissolving star cluster was studied by Kouwenhoven et al. (2010). While they find
that the ”WB fraction decreases strongly with increasing cluster mass”, the mass-ratio
distribution does not seem to vary much for different initial conditions. Kouwenhoven
et al. (2010) find a mass-ratio distribution decreasing towards high mass ratio: high-mass
primaries (M1 > 1.5M⊙) peak at q . 0.2; low-mass primaries (M1 < 1.5M⊙) show a
more gently decreasing mass-ratio distributions. Their results from the Plummer model
in virial equilibrium seem to be also consistent with a flat mass-ratio distribution in the
range q > 0.4. As mentioned, previous work by (Kroupa 1995) predicted an enhancement
of the mass-ratio distribution at large q-values, because low-q tend to be disrupted. As we
are unable to decide whether the mass-ratio distribution is rising for q < 0.4 or not (we
can only give lower limits in that range), a clear-cut conclusion whether or not the mass-
ratio distribution we have inferred agrees with the most recent simulations by Moeckel and
Bate and Kouwenhoven et al. (2010) is impossible. Overall, our results are certainly not
inconsistent with these studies.

3.6 Summary and conclusions

We have combined our angular correlation analysis of WBs in Paper I with distance in-
formation to statistically filter out unwanted optical pairs. To this end we have applied
a new ‘weighting procedure’ based on the binding probability of a pair of stars, as drawn
from their angular separation (2′′ ≤ θ ≤ 30′′) and distance estimates given by the colour-
magnitude relation of J08. Out of a sample of about 450 000 SDSS stars in a NGP-centered
field of 675 square degrees, 37 610 stellar pairs in the angular separation range mentioned
are assigned a statistical weight. Our sample, and thus the whole study, is restricted to a
colour range of 0.2 < r−i < 1.5 mag, translating into a mass range of 0.2 . M . 0.85M⊙,
and to a maximum distance of 2 000 pc.

For a principal lack of WB orbital data, our weighting procedure inherently requires
the choice of an average relative velocity assigned to each pair in our sample. Its value
is calibrated in such a way that the weighted number of pairs in each angular separation
bin reproduces the clustering signal as inferred by the angular 2PCF, and it turns out to
be 370 m/s. Fixing the relative velocity, however, limits our study to pairs with projected
separations smaller than a maximum projected separation, whose value depends on the
total mass of the pair and is found to be between 0.008 and 0.05 pc (1 600 and 10 000 AU,
respectively).

The observed colour distributions are corrected for selection effects (Malmquist bias)
using the WW technique. The bias-corrected colour distribution of WB stars derived by
our weighting procedure is in good agreement with the (corrected) colour distribution of
the field stars, in line with the findings of Sesar et al. (2008).
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There is a general lack of pairs with very different colours: pairs with a colour difference
∆ri & 1 mag, corresponding to a mass difference ∆M & 0.5M⊙, seem to be systematically
underrepresented compared to the expectation that the components of a WB system are
drawn randomly from the field mass function. This preference for pairs of similar colour or
mass is also reflected in the distribution of mass ratios q, which is inferred from the colour
distributions of the WB components using a standard mass-luminosity relation Kroupa
et al. (1993). Our mass-ratio distribution for primary masses between 0.5 and 0.85 M⊙
shows a slight enhancement at q > 0.8, while it is nearly uniform in the range 0.4 < q < 0.8,
i.e. there is an overabundance of equal-mass binaries.

Previous observations were broadly consistent with a more uniform q and random pair-
ing, notably the classical studies by Duquennoy and Mayor (1991) and Fischer and Marcy
(1992), while the most recent study by Dhital et al. (2010) supports our finding. A compar-
ison between different observational studies is generally difficult because different ranges
of separation and mass are studied. In particular, as we have restricted our q range to
q > 0.4, to avoid bias against low mass ratios, we cannot rule out a rising of the mass-
ratio distribution for q < 0.4. Such a (inverse) trend is in fact predicted by the most
recent star-formation simulations (Moeckel and Bate 2010). However, it is probably not
yet appropriate to directly compare the outcome of any star-formation simulation to the
observed properties of the field binary population, as stressed by Goodwin (2010).

Using only positional correlations and distance information from photometric paral-
laxes, our weighting procedure, based on the binding probabilities, produces reliable colour
distributions without identifying individual WBs. Circumventing the limitations of proper
motion surveys in this way, it is possible to take into account information from a much
larger number of WBs and probe their population to greater distances. Furthermore, the
procedure allowed us to create a ‘ranking list’ of WB candidates (sorted by their weights),
which can be used for follow-up studies and cross identification (Table 3.1; the full table
is available at CDS).

The drawback of the method is clearly the need for a sophisticated modeling to allow for
selection effects and the requirement to introduce an average relative velocity in the absence
of kinematic information of the pairs. It is not foreseeable that the orbital parameters of
WBs can be measured directly in the near future. We therefore believe that the novel
procedure presented in this paper is a viable method to infer the statistical properties of
WB stars and constitutes an approach complementary to common proper motion studies.
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Chapter 4

Conclusion

4.1 Summary

The present work is devoted to the study of the statistical properties of wide binary stars
– stellar pairs with separations larger than 200 AU. Such weakly bound pairs are easily
disrupted by encounters with (non-luminous) massive objects, making them an interesting
tool to constrain both the nature of dark matter and star-formation theory.

Here, the focus is on late-type main sequence stars having 20% to 85% of the Sun’s
mass. Nearly 670 000 stars with apparent magnitudes between 15 and 20.5 mag were
selected from a homogeneous sample covering about 675 square degrees in the direction
of the Northern Galactic Pole. The data were taken from the Sloan Digital Sky Survey,
which are freely accessible online (www.sdss.org).

In the first part of this work (Chap. 2), the angular two-point correlation function
(2PCF) is used to investigate the clustering properties of the stars in the sample. The
2PCF measures the excess probability with respect to a random distribution of observing
two stars close together in the sky. It relies only on the stellar positions. A clear signal
due to the presence of wide binary systems emerged at angular separations smaller than
10′′ (Fig. 2.5 on p. 39).

The observed 2PCF was modeled by means of a modified Wasserman and Weinberg
(1987) technique. In this way, it was possible to infer simultaneously the power-law index
λ of the semi-major axis distribution, which was assumed to obey a single power law, and
the local wide binary number density nWB. The semi-major axis distribution was found to
follow Öpik’s law (λ = 1), whereas the best-fit density nWB corresponds to 5 wide binaries
per 1 000 pc−3 implying that about 10% of all stars in the solar neighbourhood belong to
a late-type wide binary system.

Prior studies found evidence for a break in the separation distribution attributed to the
disruptive effects of massive encounters. Due to the increasing noise from optical pairs at
larger separations, the 2PCF method is not sensitive enough to reliably distinguish between
single and a broken power-law distribution. Neither the single nor the broken power-law
model could have been rejected by the data with confidence. The question of a break in the
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separation distribution is one of the most interesting questions in the field of wide binary
research because of the implications to the dark matter enigma.

The second part of this work (Chap. 3) was aimed at filtering out the optical pairs from
the sample and, hence, increasing the sensitivity of the analysis at larger separations. To
this end, distance information from photometric parallaxes were included in a statistical
manner using a novel weighting procedure. Based on the binding probability every double
star in the sample nearer than 2 kpc was assigned a statistical weight, which is large for
real pairs and small for optical pairs. Consequently, the derived colour and mass-ratio
distributions are dominated by the real double stars.

The colour distribution, corrected for selection effects, is found to be in good agreement
with the colour distribution of single field stars (Fig. 3.9 on p. 80). However, pairs with
a large colour difference seem to be systematically underrepresented as compared to a
random pairing of field stars (Fig. 3.12 on p. 84). This preference of pairs with similar
colour or mass, respectively, is also apparent in the mass-ratio distribution, which shows
an enhancement for large mass ratios (q > 0.8). In the range 0.4 < q < 0.8 the mass-ratio
distribution is found to be rather flat (Fig. 3.13 on p. 85). The mass-ratio distribution
inferred is contrary to the expectation from random pairing of field stars. While the
results of the present work are in broad agreement with previous wide binary studies, they
are difficult to compare to the most recent star-formation simulations.

The drawback of the statistical methods used in this work is clearly the need for a
sophisticated model both to interpret the clustering signal measured by the 2PCF, and to
allow for observational bias. In the absence of any information on the relative velocities of
the components in a wide binary system, it became necessary to assign an average relative
velocity to every pair. The average orbital velocity was chosen to reproduce the observed
2PCF. The best-fit value turned out to be 370 m/s artificially introducing a maximum
separation around 4 000 AU beyond which the pairs get assigned negligible weights. This
limitation again prevents us from drawing any conclusion on the shape of the separation
distribution at large separations.

On the other hand, the statistical approach successfully circumvents the restrictions
of common proper motion studies, which are limited to relatively nearby stars with high
proper motions. Not aiming at identifying individual wide binary systems opens the possi-
bility to include into the analysis information from a much larger number of wide binaries
and probe their population to greater distances. Here, information from about 4 000 wide
binary systems were included statistically. Yet, the method put forward allows to compile
a ‘ranking list’ of wide binary candidates (table 3.1 on p. 93), which is useful for follow-up
studies and cross identifications with other wide binary catalogues. In summary, the novel
weighting procedure presented in this work constitutes a viable method to infer the statis-
tical properties of wide binary stars and provides an approach complementary to common
proper motion studies.
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4.2 Outlook

The most obvious next step would be to compare our list of WB candidates (table 3.1)
to other double star catalogues available, like for example the Washington Double Stars
Catalog (WDS, Mason et al. 2001). A first glance at the WDS using the VizieR Service
from CDS suggests that most of our WB candidates are not included yet. In the region
around the NGP studied in this work, the WDS lists 525 pairs with angular separations
between 2′′ and 30′′. But most of them are brighter than the stars in our sample: less than
80 (60) have both their components fainter than 14 (15) mag. A careful cross-identification
of these pairs with our WB candidates remains to be done. Possibly more rewarding will
be the cross-identification of our candidates with the catalogues compiled by Sesar et al.
(2008) and by Dhital et al. (2010), both using SDSS data as well but consulting also proper
motion information from the USNO-B catalogue (Munn et al. 2004)1.

To confirm or disprove the genuineness of our WB candidates follow-up studies are
needed. Some of the stars in our sample may have their radial velocity measured, e.g. by
the RAdial Velocity Experiment (RAVE, Steinmetz 2003). Radial velocity measurements
can be used to discriminate against optical pairs, since WB components are expected to
have similar radial velocities. Up-coming large-scale survey, like for example ESA’s Gaia
mission (Turon et al. 2005), whose launch is scheduled for 2012, will provide a wealth of
data (accurate distances, proper motions and also radial velocities) that can be used to
distinguish between optical and real pairs.

Another issue that is relatively straightforward to investigate is related to the clustering
properties of the WBs themselves. Studying the distribution of WBs of intermediate
brightness at the Galactic poles, Saarinen and Gilmore (1989) showed that the pairs “are
not distributed in a Poissonian manner, but that significant and not understood structure
is apparent in the stellar distribution on the sky.” The differentiation of our sample in
terms of direction (§2.5.3) gave no evidence of any significant WB density variation (apart
from subsample E). But a more detailed analysis is surely worthwhile.

Most interestingly, Saarinen and Gilmore found only in the NGP a significant WB
‘lumpiness’; the WBs in the SGP seemed to be distributed more randomly. It would be
interesting to repeat our study also for the SGP, as not expected differences between the
stellar distributions at the Galactic poles might be attending. The SDSS mapped only a
small fraction of the southern sky and is not suitable for an analogous WB study around the
SGP. However, such a study will become feasible with the data from Southern Sky Survey
conducted with the SkyMapper telescope at the Siding Spring Observatory in Australia
(Keller et al. 2007).

An important prediction by n-body simulations of dissolving clusters is that a large
fraction of WBs are in fact hierarchical triple or quadruple systems (e.g. Kouwenhoven
et al. 2010). Again, photometric and spectroscopic follow-up studies of our WB candidates
are needed to confirm this prediction. Another way to identify unresolved pairs among our
WB candidates might be to use the colour-induced displacement method (CID, Pourbaix

1See also the erratum Munn et al. (2008).
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et al. 2004), but its very low efficiency casts doubt whether the CID is practicable here. Also
first attempts to find unresolved binaries by a peculiar position in a colour-colour diagram
in the spirit of Smolčić et al. (2004) did not yield any promising result. We do, however,
not expect that our WB candidates are heavily contaminated by unresolved binary and
multiple stars. The photometric parallax method tends to underestimate the distance of
unresolved binary stars, especially when the components are of similar brightness. A wrong
distance estimate most likely results in a too large difference in the component’s distances,
which in turn results in a small weight within our weighting procedure.

One of the major difficulties in studying the properties of WB stars is to properly take
into account all sorts of observational biases and selection effects. With the data from
Gaia it will become feasible to handle these problems in a model-independent way by
constructing large, complete WB samples (Halbwachs et al. 2003). It will be interesting to
compare the WB statistics inferred from Gaia data to the results presented in this work.
Even if Gaia will map the sky not in the same depth as the SDSS2, the unprecedented
accuracy of its parallax and proper motion measurements will complete the census of faint
wide companions to stars in the solar neighbourhood. In this way, also the question whether
the Sun itself is a member of a WB (the ‘Nemesis-Hypothesis’, Davis et al. 1984; Whitmire
and Jackson 1984, see also Appendix B.2) will be settled once and for all3. We also expect
that with Gaia the inability to probe the separations distribution at large separations
encountered in this study will be overcome. Hence, the question of a break in the WB
semi-major axis distribution can be readdressed and, eventually, it becomes possible to
place severe constraints on the nature of dark matter (DM) using WBs.

The DM paradigm will soon have to pass a test where WBs play a central role. Both
Hernandez and Lee (2008) and Peñarrubia et al. (2010) predict that WBs with separa-
tions larger than about 0.1 pc should be absent or strongly depleted in dwarf spheroidal
(dSph) galaxies, because dynamical friction has tightened them or because they have been
disrupted by encounters with dark substructures. This prediction is in principle already
testable for the local dSph using deep, high-resolution exposures of the Hubble ACS camera
and can be verified with up-coming deep large-scale surveys such as Pan-STARRS, LSST
and Gaia. If abundant WB populations are found in local dSphs – possibly through the
2PCF method – the CDM picture would be seriously challenged. Such a finding could,
however, be in favour of MOND-like theories (e.g. Milgrom and Bekenstein 1987) that go
without DM.

In his (unpublished) Master thesis at the University of Basel, Marc Horat analysed
Hubble ACS data of the two globular cluster 47 Tucanae and ω Centauri with the 2PCF
method. Unlike close binaries that are ‘hard’ in the sense of Heggie (§1.2), wide (soft)
binaries play no significant role in the evolution of stellar clusters. In fact, it can be shown
that the equilibrium number of very soft binaries in clusters is of order unity, independent
of the number of stars in the cluster (Binney and Tremaine 2008, §7.5.7). Therefore, no

2It seems that Gaia’s limiting magnitude will be considerably less than the quoted limit around 20 mag
(H. Jerjen, personal communication).

3This might be anticipated by NASA’s WISE mission (Wright et al. 2010).
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clustering signal due to WBs would be expected in any globular cluster. Most interestingly,
Horat found evidence for pairs in excess of a random distribution in both clusters. While
the signal for 47 Tuc is barely significant and questionable, ω Cen shows a clear signal at
angular separations smaller than 2′′. In a distance of about 5.5 kpc this signal corresponds
to pairs with separations of less than 0.05 pc (10 000 AU). The qualitative difference in the
2PCF inferred from the two clusters is striking and possibly supporting the notion that ω
Cen is a former nucleus of a dissolved dwarf galaxy (Hilker and Richtler 2000). A major
problem in the study was, however, the extreme sensitivity of the results to the exact
density profile of the random sample that, of course, must match the profile of the real
cluster. Finding evidence for WB in globular clusters was unexpected and future studies
should investigate this preliminary result in more detail.

In a recent theoretical work Jiang and Tremaine (2010) studied the orbital evolution of
nearby WBs due to gravitational perturbations from passing stars. They predict a second
peak in the separation distribution around 200 pc stemming from formerly bound systems
that are slowly drifting apart (the first peak is due to bound pairs). This peak causes a
significant correlation in the positions and velocities of the stars and should be detectable
in large astrometric surveys like Gaia. Another prediction is the emergence of ‘tidal tails’
in the direction of the binaries’ Galactocentric orbit, which can extend several thousands
parsec. An alignment of the components of disrupted binaries can possibly be measured
using the alignment correlation function introduced by Faltenbacher et al. (2009) – an
extension of the 2PCF that takes into account the orientation of the object (here a stellar
pair) with respect to a given frame of reference (here the Milky Way Galaxy).

Of all known stars hosting a planetary system about 20% are known to have a stellar
companion, most of them with separations larger than 200 AU (e.g. Raghavan et al. 2006).
This is most likely a observational selection effect: The majority of the known exoplanetary
systems have been discovered by the radial velocity technique. But in close (separations
smaller than a few AU) binary systems the signal from a supposed extrasolar planet would
be obscured through the large orbital speed of the two stars. Therefore, such tight pairs
are usually excluded from exoplanet searches. Numerical simulations suggest that close
pairs can truncate the protoplanetary disk, preventing the formation of planets beyond a
few AU, while binaries wider than about 100 AU are indistinguishable from single stars
regarding their planetary systems (Duchêne 2010). However, as pointed out by Mugrauer
et al. (2007), wide companions with high orbital eccentricities get close to the planet hosting
star at periastron4. In addition, WBs were ‘softened’ through numerous weak gravitational
encounters and might have been closer in the past. It can be assumed that these fragile
systems have been spared from catastrophic encounters, potentially making them even
more hospitable to the formation of larger planetary systems than single stars that have
been ejected from their birth cluster by a violent encounter (Boss 2000).

4In fact, the periastron distance is the most important parameter in assessing the influence of a companion
on planetary formation and orbital evolution (Quintana et al. 2007). Assuming that the eccentricities of
the WB are distributed thermally (f(e) = 2e), the average periastron distance is equal to a third of the
semi-major axis: r̄peri = a/3.
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A companion star may scatter small bodies (comets, asteroids, etc.) in the direction
of the planetary system resulting in repeated impacts onto the planet’s surface – possibly
facilitating the emergence of life (Burgasser 2007). In the case of the Earth, icy bodies
might have brought necessary water ice as well as the chemical precursors to biotic life
(e.g. Delsemme 2001). It is believed that a cataclysmic impact has formed the Moon (e.g.
Canup and Asphaug 2001), whose tidal forces are stabilising the Earth’s axis and thereby
reducing unpleasant climate variations (Williams and Pollard 2000). Furthermore, mass
extinctions (caused by impacts) had a profound – and sometimes constructive – influence
on the evolution of life (Raup 1994). On the other hand, too many disastrous impacts
are obviously destructive and the protective role of Jupiter has often been pointed out5.
As the formation of planets at distances from the host star comparable to that of Jupiter
(∼ 5 AU) appears to be inhibited by close stellar companions, the search for terrestrial
extrasolar planets among WB components might be especially rewarding. Thus, the WB
candidate’s list (table 3.1) that we have compiled, presumably contains promising targets
for the search of habitable exoplanets and extraterrestrial life.

5Recent studies suggest, however, that this idea is probably only true for cometary impacts of long period
comets stemming from the Oort cloud. Impact rates of asteroids and Kuiper belt objects may even be
enhanced by the presence of Jupiter (Horner and Jones 2008, 2009; Horner et al. 2010).
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Top wide binary candidates

Figure A.1 shows SDSS images from the top six wide binary candidates centered at the
primary component. The edge length of an image is 200′′. We see that they all have a
reddish colour corresponding to the late spectral type (all have masses below 0.5M⊙; see
table 3.1). With an angular separation of only 2.2 arcseconds, the two components of our
candidate number 5 (at the centre of Fig. A.1e) are barely separable.
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(a) (b)

(c) (d)

(e) (f)

Figure A.1: SDSS images of the top six WB candidates from table 3.1. The edge length is 200′′.



Appendix B

Talks

B.1 The widest binary stars – A statistical approach

This talk was given at the international conference Binaries – key to comprehension of the Uni-

verse (‘Binkey’) held in Brno, Czech Republic, 8–12 June 2009. The proceedings will be published

as a special issue of the ASP Conference Series.

Dear colleagues,

I will report on our statistical study on wide binary stars and its preliminary results.
Let me start with a short motivation why wide binaries are interesting to study.

Wide binaries may shed light on one of the most pressing mysteries of modern astron-
omy and cosmology: the nature of dark matter. Very wide pairs, with projected separations
of more than 0.1 pc, are easily disrupted by encounters of massive objects. So, the today’s
separation distribution of the widest binary stars contains fossil information of the dynam-
ical history of the Galaxy. However, the available data on very wide pairs are quite sparse
and their implications on the density of ‘MAssive Compact Halo Objects’ (MACHOs) are
still disputed. We will hear more about that by Damien Quinn on Friday.

Wide binaries are also interesting in and of themselves, as their existence is difficult
to explain in the context of star formation theory. A possible formation mechanism in
terms of dissolving young star clusters will be presented by Thijs Kouwenhoven tomorrow.
The study of the wide binary stars may provide important clues to the conditions of their
formation and of star formation in general.

A very interesting approach to test the predictions of the dark matter hypothesis was
put forward by Hernandez and Lee. According to their calculations, wide binaries should
now be absent in high-density dark matter halos with low velocity dispersion as inferred for
local dwarf spheroidal galaxies. There, wide binaries should have evolve into close binary
stars because of the orbital tightening due to the dynamical friction caused by dark matter
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particles. We have restricted our study to the wide binary population in our Galaxy so
far.

The long periods of wide binaries make it virtually impossible to identify them by their
orbital motion. We therefore rely on statistical techniques. In the past, two related methods
where used to study wide binaries: First, the angular two-point correlation function, which
was pioneered by Bahcall and Soneira in the early 80s and relies only on the positions of
the stars. Second, common proper motion, which adds proper motion information to the
astrometry of the first.

We do not aim at identifying the wide pairs individually. So, the angular two-point
correlation function appears to be suitable for our purposes. It is a quite straightforward
and well-established clustering measure, and has been widely used to study the distribution
of galaxies. No proper motion or radial velocities are needed – it relies entirely on pho-
tometric data, which are available and readily accessible from modern large-scale surveys,
such as the Sloan Digital Sky Survey (SDSS).

The correlation function has also some drawbacks. The noise due to random associa-
tions increases rapidly with angular separation and, therefore, a large sample of stars is
needed to get a statistically significant signal. The approach is purely statistical in the
sense that the pairs are not individually identified. Additionally, we need a theoretical
model to allow for selection effects and to interpret the signal measured by the two-point
correlation function.

For our study we chose a rectangluar region around the Northern Galactic Pole covering
about 675 square degrees. We selected all point-like sources classified as ‘star’ from the
sixth data release of the SDSS having a r-band magnitude between 15 and 20.5 magnitudes.

Here (Fig. 2.2 on p. 25), we see a colour-colour diagramm of the nearly one million
point-like sources within our chosen region and magnitude limits. In order to minimise the
contamination with non-stellar point-like objects, we exclude all SDSS-quasar candidates
as well as all moving objects, such as asteroids. Even after removing all quasar candidates,
a considerable scatter around the expected stellar locus remain. This scatter is probably
due to further quasars and misidentified galaxies. We therefore decided to reject all objects
having g − r < 0.5. About 670 000 stars remain in our final sample all of them having a
spectral type later than that of the sun.

Finlator et al. estimated that only about 1% of all the stars observed by the SDSS are
not on the main sequence. This justifies our basic assumption that all the stars in our
sample are main sequence stars. So we state that our final sample contains about 670 000
main sequence stars with spectral type later than G5.

The correlation function measures the excess of pairs with respect to a random distri-
bution. The simplest estimator, neglecting edge effects due to the finite sample size, is the
ratio of the observed number of distinct pairs, F , and the number of pairs expected from
a random distribution, P , minus one

ŵ(θ) =
F (θ)

P (θ)
− 1 .
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This figure (Fig. 2.5 on p. 39) shows the two-point correlation function as inferred from
our final sample as solid circles. The corresponding correlation amplitude is shown on the
left ordinate. The errors are Poissonian. We can see that there is a strong clustering signal
at angular separations smaller than 10′′, down to the resolution limit of the SDSS at 2′′.

In the same figure we also have plotted the cumulative number of pairs in excess of a
random distribution as open circles. Herefrom, it is evident that there are pairs in excess
of random up to the maximum angular separation we have examined, that is, up to half
an arcminute. This appears to be contradictory to an independend study on wide binaries
using the SDSS database by Sesar et al. They find that there are essentially no physical
bound pairs with angular separations larger than 15 arcseconds. Unfortunately, all our
attempts to track down the cause of this apparent discrepancy failed so far.

To model the clustering signal, we rely on a versatile technique, developed in the late
80’s by Wasserman and Weinberg. It was designed “for comparing wide binary observations
with theoretical semimajor axis distributions”. In this framework, the number of observed
binaries as a function of the projected separation, s, can be expressed as a product of the
reduced separation distribution, Q, and the effective volume, V , times the total number
density of wide binaries in the solar neighbourhood nWB

ψ(s) = nWBQ(s)V (s) .

Without going into details, let me mention that the reduced separation distribution con-
tains the physical properties of the wide binary stars, such as the semi-major axis distribu-
tion, the distribution of eccentricities, the orientations of the orbital planes, and projects
them onto the sky. The effective volume, on the other hand, allows for selection effects. It
accounts for the characteristics of our sample such as the area covered by it, its magnitude
limits and the resolution limit. Furthermore, it includes the stellar density distribution
and a luminosity function for single stars.

Regarding the reduced semi-major axis distribution, we assume that it obeys a single
power-law, which is normalised in the range, where this single power-law model holds. This
range provides at the same time the definition of what we consider to be a ‘wide binary
star’. Following Wasserman and Weinberg we take the lower limit to be 200 AU. A natural
choice for the upper limit is provided by the Galactic tidal limit. We find it to be of the
order of 1 parsec.

There has been some discussion whether the data require a break in the semi-major
axis distribution or not. While Wasserman and Weinberg could not give a conclusive
answer, more recent studies by Lpine and Bongiorno and by Sesar et al. indicate that the
data indeed is best described by a broken power-law model. So the question that arises is
whether the assumption of a single power-law is rejected by the data.

As the original Wasserman-Weinberg technique deals with projected separations, whereas
we are dealing with angular spearations alone, some modifications are required. Without
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going into detail again, we find this expression for the number of wide binaries, ϕ, as a
function of angular separation

ϕ(θ) = nWBΩ

〈s〉max/θ∫

〈s〉min/θ

dDD3ρ̃(D)Q(Dθ)

Mmax(D)∫∫

Mmin(D)

dM1dM2Φ̃(M1)Φ̃(M2) .

The model correlation function is then obtained by adding the number of physical pairs,
ϕ, to the number of pairs expected from a random distribution, P

wmod(θ) =
ϕ(θ) + P (θ)

P (θ)
− 1 .

The model has two free parameters - the local number density of wide binaries, nWB, and
the power-law index of the semi-major axis distribution, λ. We infer them simultaneously
by least squares fitting. The uncertainties of the best-fit values are estimated by Monte
Carlo confidence regions. We find a local wide binary density of about 5 wide binaries in
1 000 cubic parsecs and a power-law index of 1, consistent with Öpik’s law. The relative
errors are roughly ±10%, where we have quoted 95% confidence intervals.

Here (Fig. 2.5 on p. 39), the model curves corresponding to the best-fit values are
plotted together with the observed correlation function from the SDSS data. We see that
at larger angular separations the cumulative number of pairs in excess of random is slightly
overestimated. This could be interpreted as a hint that the semi-major axis distribution is
indeed broken. Having a steeper decrease from a certain semi-major axis on would result
in a flatter model curve. However, the assumption of a single power-law model cannot be
rejected with confidence.

So, we conclude that the data is consistent with a single power-law up to the tidal limit,
whereas the power-law index agrees with Öpik’s law. I need to emphasise that this finding
is not necessarily contradictory to previous studies, which found a break in the separation
distribution. However, whether the data is also consistent with a specific broken power-law
model, like that found by Lépine and Bongiorno for example, remains to be checked. The
derived wide binary density tells us that about 10% of all the stars in our sample are a
member of a wide binary.

Once we have determined the two free parameters in our model, we can calculate
the number of physical pairs that can be observed in our sample as a function of the
projected separation. In doing so, we find that about 800 very wide binaries with projected
separations larger than 0.1 pc can presumably be observed in our sample, whereas none are
expected to be found beyond 0.8 given the range in angular separation we have examined.
This does, however, not mean that pairs with projected separations larger than 0.8 pc do
not exist at all in the Galaxy. Indeed, the existence of an extremly wide binary with a
projected separation of 1.1 pc has been recently confirmed. I guess, we will hear more
about this outstanding discovery by Damien Quinn.

Here (Fig. 2.8 on p. 43), we see the number of wide binaries as a function of the
projected separation, which are expected to be observed in our sample having angular
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separations between 2′′ and 30′′. The shape of this distribution is largely determined by
selection effects.

In view of their implications on star formation and the nature of dark matter, wide
binaries may indeed constitute a key to the comprehension of the Universe.

Thank you!
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B.2 Nemesis: Hat die Sonne einen Begleiter?

Dieser Vortrag wurde im Rahmen einer vom Astronomischen Verein Basel anlässlich des In-

ternationalen Jahr der Astronomie organisierten Vortragsreihe am 11. November 2009 in Basel

gehalten. In den 80er Jahren trug die Nemesis-Hypothese massgeblich zum Aufschwung der

Forschung an weiten Doppelsternen bei.

Sehr geehrte Damen und Herren, liebe Freunde der Astronomie,

Ich danke Herrn Binggeli für die Einleitung und bedanke mich für Ihr zahlreiches Er-
scheinen. Vielleicht mögen sich einige von Ihnen daran erinnern als vor etwa 25 Jahren in
vielen Zeitungen Meldungen über einen noch unentdeckten Sonnenbegleiter zu lesen waren;
einen Stern, der um unsere Sonne kreist, ähnlich wie die Erde. Nemesis – der Todesstern;
so oder so ähnlich lauteten damals die Schlagzeilen, denn Nemesis, wie der Schwesterstern
der Sonne getauft wurde, soll in regelmässigen Abständen Tod und Verderben über die
Welt bringen. Welche Indizien für eine solch kühne Hypothese sprechen und was heute aus
der Nemesis-Hypothese geworden ist, möchte ich in meinem heutigen Vortrag erläutern.

Abb. B.1: Ausschnitt aus dem
Gestein an der Kreide-Tertiär
Grenze (Mitte). Darum herum
sind mikroskopische Aufnah-
men (grünlich) des Sediments
zu sehen. c© A. Montanari.

Die Geschichte des Lebens auf der Erde ist keineswegs
geradlinig verlaufen. Immer wieder starben fast schlagartig
ein Grossteil aller Tier- und Pflanzenarten aus. Das wohl
bekannteste dieser Massenaussterbeereignisse ereignete sich
vor etwa 65 Millionen Jahren am Ende der Kreidezeit. Etwa
drei Viertel aller irdischen Lebensformen sind damals aus-
gestorben, unter ihnen auch die Dinosaurier. Massenausster-
beereignisse sind durch fossile Funde gut belegt, doch deren
Ursache ist in den meisten Fällen noch völlig unklar.

Es gilt heute jedoch als gesichert, dass die Ursache des
Untergangs der Dinosaurier ein verheerenden Meteoritenein-
schlag war. Ein Asteroid oder ein Komet von der Grösse
des Mount Everest schlug damals mit ungeheurer Wucht
auf der Erde auf. Die Folgen eines solchen Einschlags sind
katastrophal: Die Gesteinsmassen, welche beim Aufprall in
die höchsten Schichten der Atmosphäre geschleudert wurden,
verteilten sich in Form von dunklen Staubwolken um den
gesamten Erdglobus. Eine Nacht ohne Mond und ohne Sterne
brach über die Welt herein. über viele Monate sollte es keinen
Morgen geben.

Das wichtigste Indiz für einen Meteoriteneinschlag liefert
eine dünne, etwa zwei Zentimeter dicke Tonschicht, die das
Ende der Kreidezeit in den Gesteinsschichten markiert. Im

Bild hier (Abb. B.1) sehen wir einen Ausschnitt aus dem Gestein an der Kreide-Tertiär
Grenze. Das hellere Sediment unten stammt aus der Kreidezeit, während die dunklere
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Gesteinsschicht oben bereits aus dem darauf folgenden Zeitabschnitt, dem Tertiär, stammt.
Dazwischen liegt jene aufschlussreiche Tonschicht, die die Grenze zwischen den beiden
geologischen Zeitabschnitten markiert. In den grünlichen mikroskopischen Aufnahmen
können wir zahlreiche Fossilien, von winzigen Lebewesen erkennen. Es handelt sich um so
genannte Foraminiferen, kurz Forams. Diese einzelligen, meist gehäusetragenden Meeres-
bewohner kamen während der Kreidezeit in vielen verschieden Formen und Grössen vor.
Den Übergang zur Kreidezeit überlebten aber nur ganz wenige, kleine Arten. Riesige auf
dem Land lebende Dinosaurier und winzige einzellige Meeresbewohner starben zur selben
Zeit aus. Was war da nur geschehen? Der Schlüssel zur Antwort muss in dieser Tonschicht
stecken.

Abb. B.2: Das “Alvarez-Team” um 1980. Von links nach rechts: Helen Michel, Frank Asaro, Walter
Alvarez und Luis Alvarez. c© Lawrence Berkeley National Laboratory.

Der Physik-Nobelpreisträger Luis Alvarez, hier ganz rechts im Bild (Abb. B.2), stellte
Ende der 70er Jahre zusammen mit seinem Sohn Walter, einem Geologen, und den bei-
den Chemikern Frank Asaro und Helen Michel bei der Analyse dieser Tonschicht fest,
dass der Iridiumgehalt in dieser Schicht etwa 600 mal höher als in den umgebenden Sed-
imenten ist. Dieses Edelmetall kommt in der Erdkruste kaum vor. Es findet sich aber in
erhöhter Konzentration in Meteoriten und Kometen. In Folge wurden weltweit Gestein-
sproben analysiert und die “Iridium-Anomalie” in der besagten Tonschicht wurde vielfach
bestätigt. Es konnte auch gezeigt werden, dass all das Iridium in jener Schicht von ein und
derselben Quelle stammt. Die Arbeit des Alvarez-Team hat gezeigt, dass zumindest ein
Massenausterbeereignis höchst wahrscheinlich durch einen Meteoriteneinschlag verursacht
wurde.

Doch wie jede revolutionäre Idee, stiess die “Alvarez-Hypothese” auf heftigen Wider-
stand, war man doch der Ansicht, dass die Dinosaurier deshalb ausstarben, weil sie sich
nicht mehr gegen die Säugetiere behaupten konnten, welche sich besser an veränderte
Umweltbedingungen angepasst haben. Nur langsam, während immer mehr Indizien zusam-
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Abb. B.3: Verteilung der Aussterbeereignisse nach Raup and Sepkoski (1984). Die (logarithmische) Skala
auf der Ordinate gibt an wie viele Prozent der Lebewesen in welchem Zeitabschnitt ausgestorben sind. Die
grau schraffierten Spitzen deuten Massenausterbeereignisse an. Die strikte 26 Millionen Jahre Periodizität
ist als vertikale Linien eingezeichnet. c© National Academy of Sciences.

mengetragen wurden, konnte sich die neue Theorie des Untergangs der Dinosaurier durch-
setzen. Möglicherweise ist die Alvarez-Theorie aber nur die Spitze des Eisbergs.

Im Februar 1984 veröffentlichten die beiden angesehenen Paläontologen David Raup
und John Sepkoski, beide damals an der University of Chicago tätig, einen folgenschweren
Artikel. Darin untersuchten sie zum ersten mal mit Hilfe eines Computers eine Liste von
über 30’000 fossilen Gattungen von Meerestieren. Die Liste wurde über Jahrzehnte von
Sepkoski zusammengetragen und stellt bis heute die vollständigste Datenbasis der marinen
Fossilien dar. Raup und Sepkoski entdeckten, dass die Massenausterbeereignisse nicht
zufällig in der Erdgeschichte verteilt waren, sondern ein erschreckend regelmässiges Muster
an den Tag legten: In regelmässigen Abständen von ungefähr 26 Millionen Jahren sind fast
alle Tier- und Pflanzenarten auf der Erde ausgestorben.

Diese Figur (Abb. B.3) ist aus dem Originalartikel von Raup und Sepkoski entnommen.
Sie zeigt wie viele Prozent der Lebewesen in welchem Zeitabschnitt ausgestorben sind. Das
rechte Ende der horizontalen Achse entspricht der heutigen Zeit, während wir ganz links
gerade noch das Ende des Perms vor etwa 250 Millionen Jahren sehen. Dort an der Perm-
Trias Grenze fand das grösste Massenausterbeereignis der Erdgeschichte statt. Auch jenes
Aussterbeereignis, bei dem die Iridium-Anomalie gefunden wurden, an der Kreide-Tertiär
Grenze, wo die Dinosaurier ausstarben, ist deutlich sichtbar. Als vertikale Linien ist die
strikte 26 Millionen Jahre Periodizität eingezeichnet.

Es war nicht sehr überraschend, dass es so häufig zu Massenaussterbeereignisse kam,
aber die Regelmässigkeit mit der sie offenbar stattfanden war sehr wohl eine grosse Über-
raschung. Was könnte der Antrieb dieses tödlichen Uhrwerks sein, das im Rhythmus von
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etwa 26 Millionen Jahren tickt? Aufgrund der buchstäblich astronomischen Zeitspanne,
halten Raup und Sepkoski rein biologische oder irdische Ursachen für unwahrscheinlich
und bevorzugen extraterrestrische Erklärungen. Nur zwei Monate spaeter, am 19. April
1984, publizierte das renommierte Fachmagazin Nature gleich fünf Beiträge, in welchen ver-
schiedene astrophysikalische Szenarien vorgeschlagen wurden, um die beobachtete Regel-
mässigkeit des Aussterbens in der Erdgeschichte zu erklären. Ich möchte Ihnen, meine
Damen und Herren, eine dieser Szenarien etwas näher vorstellen. Jenes, das unter dem
Namen “Nemesis-Hypothese” bekannt wurde.

Abb. B.4: Nemesis, Alfred Rethel, 1837.
Öl auf Leinwand.

In der Griechischen Mythologie ist Nemesis die
Göttin der Vergeltung, welche unerbittlich jegliches
Vergehen gegen die Götter rächt. Sie bestraft vor
allem die Überheblichen und Anmassenden und wird
oft als unbestechliche Rachegöttin dargestellt. In
diesem Gemälde von Alfred Rethel (Abb. B.4) ver-
folgt Nemesis einen Dieb dessen Opfer im Hinter-
grund verwundet am Boden liegt. Aber es gibt für
den Schurken kein Entkommen: Seine Zeit ist bere-
its abgelaufen, wie die Sanduhr in der linken Hand
des Racheengels andeutet. Das Schwert der Vergel-
tung in Nemesis’ rechter Hand wird das Schicksal des
Fliehenden besiegeln.

Was haben aber nun die Dinosaurier und all
die anderen ausgestorbenen Tiere und Pflanzen ver-
brochen, dass Nemesis an ihnen Vergeltung übte?
Der Vater der Nemesis-Hypothese, Richard Muller,
Professor für Physik an der University of California
in Berkeley, schreibt über die Namensgebung:

Für mich spiegelt der Name die Tatsache
wider, dass die Dinosaurier erfolgreiche
Kreaturen waren, die durch ein Ereignis
zerstört wurden, das vom Himmel kam.

Haben die Dinosaurier und die anderen Lebewesen es
gewagt die Autorität der Götter in Frage zu stellen?
Lassen Sie uns lieber einen genaueren Blick auf die
Nemesis-Hypothese werfen.

Der Originalartikel (Davis, Hut, and Muller
1984) ist in der besagten Nature Ausgabe unter dem
Titel “Extinction of species by periodic comet showers” – also etwa “Aussterben von
Arten durch regelmässige Kometenregen” – erschienen. Er ist neben Muller noch von
zwei weiteren Physikern unterschrieben: Marc Davis, einem theoretischen Astrophysiker
der in Princeton und Harvard tätig war und jetzt, wie Muller, Professor für Physik in
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Berkeley ist und Piet Hut, auch Astrophysiker und Professor am Institute for Advanced
Study in Princeton.

Abb. B.5: Richard A. Muller,
Professor für Physik an der Uni-
versity of California in Berke-
ley. Er ist der Vater der
Nemesis-Hypothese. Das Bild
stammt von seiner Homepage:
http://muller.lbl.gov/.

Die Idee ist, dass ein noch unentdeckter Stern auf einer
lang gezogenen Bahn mit einer Umlaufzeit von etwa 26 Mil-
lionen Jahren um unsere Sonne kreist (Abb. B.6). Demnach
kommt dieser Stern alle 26 Millionen Jahre uns so nahe, dass
er durch die Oortsche Kometenwolke fliegt. Die Oortsche
Wolke ist eine riesige Ansammlung von Myriaden von Kome-
tenkernen, welche unser Sonnensystem schalenförmig in einem
Abstand von etwa 50 000 AU umschliesst. (Eine Astronomis-
che Einheit ist der mittlere Abstand zwischen Erde und Sonne
– etwa 150 Millionen Kilometer.) Die Oortsche Wolke wurde
1950 vom niederländischen Astronomen Jan Hendrik Oort
postuliert, um den Ursprung langperiodischer Kometen zu
erklären. Obwohl die Oortsche Wolke nicht direkt beobachtet
werden kann, zweifelt heute kaum ein Astronome an ihrer Ex-
istenz.

Nemesis wird also alle 26 Millionen Jahre, so die Idee,
die Oortsche Wolke durchfliegen und dabei zahlreiche Kome-
tenkerne aus ihrer Bahn werfen. Die meisten betroffenen
Kometen werden in die Weiten des Weltalls katapultiert. Ein
kleiner Teil hingegen, der immer noch mehrere hundert Mil-
lionen Kometen umfassen kann, wird in Erdrichtung abge-

lenkt, wo sie einen fürchterlichen “Kometensturm” hervorrufen. Normalerweise herrscht
im Inneren des Sonnensystems “Windstille”, denn Jupiter und Saturn sorgen dafür, dass
Kometen die sich in die Nähe der Sonne verirrt haben, schleunigst wieder herausgeschleud-
ert werden. Die riesigen Gasplaneten unseres Sonnensystem formen also, so zu sagen, das
“Auge” des Kometensturms, worin wir uns im Moment befinden. So sind Schweifsterne,
wie die Kometen auch genannt werden, relativ seltene Himmelserscheinungen – und das
ist auch Gut so.

Zwar mag sich für einen irdischen Beobachten einen wundervollen Anblick ergeben,
wenn jede Nacht mehrere neue Kometen sichtbar werden. Doch wird die scheinbare Idylle
eines Kometensturmes mit Sicherheit nicht all zu lange andauern. Früher oder später wird
einer der Kometen mit der Erde kollidieren mit katastrophalen Folgen für die Erdbewohner.
Nach der Nemesis-Hypothese sollte also nicht nur ein Massenaussterbeereignis durch einen
riesigen Einschlag verursacht worden sein, sondern alle!

Da seit dem letzten Massensterben etwa 11 Millionen Jahre vergangen sind, glauben
wir, dass Nemesis, falls sie existiert, etwa einen halben Umlauf seit ihrer letzten Durch-
querung der Oortschen Wolke durchlaufen hat und sich daher nahe dem Punkt grösster
Entfernung zur Sonne, ihrem Aphel, befindet. Nach Keplers Gesetz müsste Nemesis eine
Entfernung von etwa 23 Billionen Kilometer (2,4 Lichtjahre) haben. Das ist gut die Hälfte
der Entfernung zu Proxima Centauri, des sonnennächsten bekannten Sterns.

http://muller.lbl.gov/
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Abb. B.6: Das Sonnensystems mit der Sonnenbegleiterin Nemesis. Der innere Teil der Oortschen Wolke
ist frei von Kometenkernen und bildet das “Auge” des Sturmes. Die Grösse des Sonnensystems ist stark
übertrieben dargestellt. Abbildung nach Muller (1988), modifiziert durch den Autor.

Als Richard Muller im Streitgespräch mit Luis Alvarez die Idee eines Sonnenbegleiters
in den Sinn kam, war die erste Frage, die sich die beiden Physiker stellten, ob denn diese
ungewöhnlich weite Umlaufbahn überhaupt stabil sein kann. Je weiter zwei massereiche
Körper voneinander entfernt sind, desto schwächer sind sie durch die Gravitationskraft
aneinander gebunden. Bei dem riesigen Orbit, den Nemesis haben müsste, um die Sonne
mit einer Umlaufszeit von 26 Millionen Jahren zu umkreisen, scheint die Frage nach der Sta-
bilität der Umlaufbahn berechtigt. Zunächst stellt sich die Frage, ob der Orbit gegenüber
den Gezeitenkräften der Milchstrasse stabil ist. Jedes ausgedehnte Objekt, das sich in
einem (inhomogenen) Gravitationsfeld befindet, erfährt eine Gezeitenkraft. Meine Füsse
sind beispielsweise etwas näher bei der Erde als mein Kopf. Daher werden meine Füsse
auch ein bisschen stärker an die Erde gezogen als mein Kopf. Unter dem Strich ergibt das
eine Kraft, die mich etwas auseinander zieht. Natürlich ist diese Kraft winzig und spielt
im Alltäglichen Leben kaum eine Rolle. Anders ist das aber bei den Gezeitenkräften des
Mondes, die auf der Erde das bekannte Phänomen von Ebbe und Flut verursachen.

Auch ein Doppelsternsystem, das im Gravitationsfeld der Milchstrasse kreist, erfährt
eine Gezeitenkraft. Derjenige Stern, der sich näher zum Galaktischen Zentrum befindet,
wird etwas stärker in dessen Richtung gezogen als sein Begleiter, einfach weil es dort mehr
Sterne hat als im Aussenbereich der Milchstrasse. In diesem Bild (Abb. B.7) nehmen wir
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Abb. B.7: Gezeitenkräfte, welche auf das Sonne-Nemesis System wirken. Das gravitative Zentrum der
Milchstrasse wurde willkürlich irgendwo weit entfernt rechts oben angenommen. Dann ist Nemesis etwas
näher am Zentrum als die Sonne und wird folglich auch ein bisschen stärker angezogen. Dieser Gezeiten-
effekt droht weite Doppelsterne auseinanderzureissen. Abbildung nach Muller (1988), modifiziert durch
den Autor.

einfach mal an, dass das Galaktische Zentrum irgendwo weit entfernt rechts oben liegt.
Die Länge der Pfeile entspricht der Anziehungskraft der Milchstrasse. Wir sehen, dass
Nemesis etwas stärker zum Zentrum der Milchstrasse gezogen wird als die Sonne. Auch
hier ergibt sich eine Nettokraft, die die beiden Sterne auseinander zu ziehen droht. Nur
wenn ihre gegenseitige Anziehungskraft gross genug ist, können sie sich gegen die Gezeit-
enkräfte der Milchstrasse behaupten und bleiben aneinander gebunden. Trotz des riesigen
Durchmessers, ist Nemesis’ Orbit stabil gegenüber den Gezeitenkräften der Milchstrasse.
Dennoch sind die Gezeitenkräfte keineswegs zu vernachlässigen.

Der Nemesis- Orbit muss nicht nur momentan stabil sein, sondern über mindesten
250 Millionen Jahre, diejenige Zeitspanne, in welcher Raup und Sepkoski die periodischen
Aussterbeereignisse beobachteten, mehr oder weniger unverändert bleiben. Wegen des
grossen Abstandes ist Nemesis nur schwach an die Sonne gebunden und ihre Bahn ist
deshalb anfällig auf Störungen durch vorbeiziehende Sterne. Ein naher Stern kann bei
seinem Vorbeiflug Nemesis’ Bahn leicht stören, wie hier (Abb. B.8) völlig übertrieben
dargestellt. Es ist schwierig sich vorzustellen wie durch eine solch wiederholt gestörte
Bahn ein regelmäiges Muster erzeugt werden soll.

Mit Hilfe von detaillierten Berechnungen konnte man zeigen, dass der gemeinsame Ein-
fluss naher Sterne und der Gezeitenkräfte dazu führt, dass Nemesis’ Umlaufbahn langsam
anwächst und somit immer weniger stabil wird. Schliesslich wird Nemesis sich von der
Sonne loslösen und in die Weiten des Weltalls entschwinden. Man schätzt, dass dies in
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Abb. B.8: Ein vorbeifliegender Stern (blau) stört Nemesis’ Bahn (stark übertrieben dargestellt). Abbildung
nach Muller (1988), modifiziert durch den Autor.

etwa einer Milliarde Jahre geschehen wird. Die Umlaufbahn von Nemesis scheint also auf
sehr lange Sicht tatsächlich instabil zu sein. Zudem führt das Wachsen der Umlaufbahn
natürlich dazu, dass die Umlaufzeiten immer länger werden.

Es muss betont werden, dass die Nemesis-Theorie niemals eine exakte Regelmäigkeit vo-
rausgesagt hatte. Die Störungen von vorbei fliegenden Sternen verursachen Schwankungen
in der Periodizität und, wie schon gesagt, einen leichten Trend hin zu längeren Umlauf-
szeiten. Dies steht aber nicht unbedingt im Widerspruch zu den fossilen Befunden.

Das genaue Alter von Sedimenten zu bestimmen ist kein leichtes Unterfangen und
Unsicherheiten von mehreren Millionen Jahren sind durchaus üblich. In der Zeitspanne von
250 Millionen Jahren erwartet man eine Zunahme der Umlaufszeit von lediglich 2 Millionen
Jahren – zu wenig um bei den Unsicherheiten geologischer Altersbestimmungen ins Gewicht
zu fallen. Auch die Schwankungen der Umlaufszeit, welche auf etwa 15 Prozent geschätzt
wurden, sind durchaus mit den Unsicherheiten der Gesteinsdatierungen verträglich (Hut
1984).

Zusammenfassend kann man die dynamische Geschichte Nemesis’ wie folgt erzählen:
Vor etwa 4.5 Milliarden Jahren entstand unser Sonnensystem und mit ihm zusammen
auch Nemesis. Zu Beginn hatte Nemesis einen viel kleineren Abstand zur Sonne und eine
Umlaufszeit von nur etwa 2 Millionen Jahren. Die steten Störungen der benachbarten
Sterne und der Einfluss der Gezeitenkräfte hat in Folge den Orbit ”aufgeweicht” bis die
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Umlaufszeit den heutigen Wert von etwa 26 Millionen Jahren erreicht hat. In Zukunft wird
sich Nemesis’ Bahn weiter vergrössern und in etwa einer Milliarde Jahren wird Nemesis
das Sonnensystem für immer verlassen haben.

Die Berechnungen haben also gezeigt, dass ein solcher Orbit über den fraglichen Zeitraum
stabil sein kann, also prinzipiell möglich ist und nicht im Widerspruch zu den geologis-
chen Befunden steht. Trotz der Unsicherheiten in der Datenlage ist es keineswegs leicht
ein Modell zu finden, das nicht im Widerspruch zu irgend einer Beobachtungstatsache
steht. “Beobachtungstatsache” – das führt mich zu einer drängenden Frage, die Sie sich
wahrscheinlich schon lange stellen: “Kann es sein, dass wir Nemesis übersehen haben?”

Die Kurzantwort auf diese Frage lautet: “Ja.” Zwar wurden praktisch alle nahen
Sterne beobachtet und katalogisiert, aber nur bei den aller hellsten wurde auch die Distanz
gemessen. Es kann also durchaus sein, dass wir zwar ein Bild von Nemesis haben, aber
nicht bemerkt haben, wie nahe dieser Stern unserer Sonne ist.

Man kann grob abschätzen wie hell Nemesis etwa ist. Falls Nemesis existiert, ist sie
ein relativ leuchtschwacher Stern, denn wäre sie heller, hätten wir ihre Distanz bereits
gemessen. Sie ist also sicherlich viel leuchtschwächer als die Sonne und daher auch viel
kleiner und masseärmer. Andererseits darf Nemesis aber auch nicht zu massearm sein,
denn sonst würde sie nicht genügend Kometenkerne in der Oortschen Wolke stören, um
auf der Erde einen Kometenregen zu verursachen. Wägt man alle Parameter gegeneinander
ab, kann man schliessen, dass Nemesis höchstwahrscheinlich ein Brauner Zwerg ist.

Braune Zwerge sind streng genommen schon zu massearm um als Stern gelten zu
können. Vielmehr bilden sie das Bindeglied zwischen Sternen und Planeten. Mit einer
Masse von weniger als 5% der Sonnenmasse kann ein Brauner Zwerg nicht genügend Druck
und Temperatur in seinem Inneren aufbauen um Wasserstoff zu Helium zu verschmelzen.
Dieser nukleare Prozess ist charakteristisch für Sterne. Er stabilisiert sie und bringt sie
zum leuchten. Dennoch sind Braune Zwerge nicht völlig schwarz, denn ihre Gravitation-
senergie reicht aus um sie zum Glimmen zu bringen. Sie sind aber im allgemeinen viele
10 000 male leuchtschwächer als die Sonne und daher sehr schwierig zu beobachten.

Zu der äusserst schwachen Leuchtkraft kommt noch die weitere Schwierigkeit hinzu,
dass Nemesis wohl kaum eine Eigenbewegung aufweist. Die meisten nahen Sterne fallen
durch ihre relative grosse Eigenbewegung auf. Sie kennen das vom Zug fahren: Wenn Sie
aus dem Fenster schauen, sehen Sie wie die nahen Objekte rasch an Ihnen vorbeihuschen,
während Sie die in der Ferne liegende Landschaft geniessen können, die nur allmählich
vorbeizieht. Aus dem gleichen Grund scheinen weit entfernte Sterne praktisch unbeweglich,
weswegen sie auch Fixsterne genannt werden. Nähere Sterne hingegen bewegen sich sehr
langsam aber durchaus messbar am Himmelszelt.

Nemesis wäre zwar sehr nahe, aber weil sie an die Sonne gebunden ist, bewegt sie sich
mit ihr durch die Milchstrasse. So wie ein in gleicher Richtung und gleicher Geschwindigkeit
auf dem Nachbargleis fahrender Zug für Sie scheinbar still steht, so wird auch Nemesis keine
Eigenbewegung vorweisen und daher auch nicht besonders auffallen.

Man mag sich vielleicht fragen, ob denn Doppelsternsysteme bekannt sind, die vergle-
ichbare Eigenschaften wie das Sonne-Nemesis-System haben, oder ob wir ein Spezialfall
wären. Doppelsternsysteme, also zwei durch die Gravitationskraft aneinander gebundene
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Abb. B.9: Der Barringer Krater in Arizona, USA. Mit 50 000 Jahren ist er viel zu jung um auf das Konto
von Nemesis zu gehen. Das Bild stammt von http://www.donnersteine.de/. c© Stephan Decker.

Sterne, gibt es sehr viele. Die meisten davon sind aber viel näher zusammen als Nemesis
von der Sonne entfernt sein müsste. Doppelsterne bei welchen die beiden Sterne eine Ab-
stand von über zwei Lichtjahren voneinander haben, sind sehr selten in unserer Galaxis
– kommen aber vor. Solche weiten Doppelsterne beherbergen jedoch, soweit bekannt ist,
keine Braunen Zwerge. Aber angesichts der Schwierigkeiten Braune Zwerge zu beobachten,
verwundert es aber auch nicht, dass wir noch keine in weiten Doppelsternsystemen entdeckt
haben.

Viele Wissenschaftler sind der Ansicht, dass eine neue Theorie nur dann brauchbar ist,
wenn es die Möglichkeit gibt sie zu widerlegen. Gibt es also irgendwelche Konsequenzen der
Nemesis-Theorie, die wir überprüfen könnten? Wenn wirklich in regelmässigen Abständen
von 26 Millionen Jahren ein Kometenregen auf der Erde niederging, dann müssten Spuren
davon finden sein.

Der Barringer-Krater in Arizona geht mit Sicherheit nicht auf das Konto von Nemesis.
Mit einem Alter von nur etwa 50’000 Jahren ist er viel zu jung. Er ist aber für die Nemesis-
Theorie insofern von Belang, als dass er der erste Krater ist, bei welchen man schlüssig
zeigen konnte, das er durch einen Meteoriteneinschlag entstanden ist. Die älteren Ein-
schlagskrater auf der Erde sind weit weniger auffällig. Sie wurden durch Wind und Wasser
Erosion sowie durch kontinentale Plattenverschiebungen buchstäblich vom Erdboden ver-
schluckt. Einige alte Krater haben aber trotz allem überlebt und etwa hundert wurden
bisher von den Forschern entdeckt und datiert. Als die Geologen sich die Verteilung der
Alter dieser Krater anschauten, stellten sie fest, dass die grössten Krater sich mit ungefähr
der gleichen 26 Millionen Jahren Periodizität häuften als die Massenaussterbeereignisse

http://www.donnersteine.de/MetimShopHTML/CanyonDiablo.htm
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(Alvarez and Muller 1984). Da die Alter der Krater aber nur sehr ungenau bestimmt sind,
ist dieses Ergebnis noch sehr umstritten in der Fachwelt. Es zeigt jedoch, dass man die
Nemesis-Hypothese im Prinzip testen und auch falsifizieren kann.

Abb. B.10: Ein Objekt, das durch die Oortsche
Wolke fliegt, verleiht den Kometenkernen einen
bevorzugten Drehsinn um die Sonne. Die Bah-
nebene dieses Objektes definiert auch die Ebene,
in welcher die Kometen kreisen. Nemesis’
Perihel (blauer Punkt in verbesserter Darstel-
lung) ist gleichsam das Aphel der Kometenbah-
nen. Abbildung nach Muller (1988), modifiziert
durch den Autor.

Ein weiterer Hinweis auf die Existenz von
Nemesis könnte von den Kometen kommen. Ein
massereicher Körper, der durch die Oortsche
Wolke fliegt, zieht die dortigen Kometenkerne
ein Stück mit sich. Somit erhalten die Kome-
ten eine bevorzugte Richtung, in der sie um
die Sonne kreisen (Abb. B.10). Man muss hier
zu diesem Schema anmerken, dass ist der Or-
bit von Nemesis schlecht gezeichnet ist; er sollte
vielmehr so aussehen, dass der sonnennächste
Punkt, das Perihel (hier blau eingezeichnet),
auf der grossen Achse der Ellipse liegt. Dieser
Punkt darf man auch in erster Näherung als
Ausgangspunkt des Kometensturms betrachten.

Nemesis verursacht also einen “Kometen-
wirbelsturm”, der vorzugsweise in die gleiche
Richtung dreht, wie Nemesis um die Sonne
kreist. Wir würden also erwarten, dass es
einen überschuss an langperiodischen Kome-
ten gibt, die in einer bestimmten Ebene in
einem bestimmten Sinn kreisen. Diese Ebene
wäre dann natürlich identisch mit der Ebene,
in welcher Nemesis ihre Bahnen zieht. Weit-
erhin würden wir erwarten, dass die sonnenent-
ferntesten Punkte dieser Kometenbahnen, deren

Aphelien, sich an einer bestimmten Position am Himmel häufen; und zwar an jener Stelle,
wo sich Nemesis’ Perihel befinden würde.

Es liegt also auf der Hand, dass man die bekannten Kometenbahnen etwas genauer be-
trachten sollte. Dies wurde auch gemacht und man hat tatsächlich eine Gruppe von langpe-
riosischen Kometen gefunden, die alle ungefähr in der selben Ebene im gleichen Sinn kreisen
und deren Aphelien sich an einer Stelle am Himmel zu häufen scheinen (Delsemme 1986).
Mit Hilfe dieser Kometengruppe konnte man berechnen, dass die Störung der Oortsche
Wolke, die diese Gruppe erzeugt hatte, vor höchstens 15 Millionen Jahren gewesen sein
kann, was nicht im Widerspruch zur Nemesis-Hypothese steht. Ausserdem zeigen die Rech-
nungen, dass das Objekt, welches durch die Oortsche Wolke flog sehr langsam unterwegs
gewesen sein muss. Ansonsten hätten die Kometen, salopp gesprochen, keine Zeit gehabt
auf den fahrenden Zug aufzuspringen und von ihm mitgenommen zu werden. Wegen den
Unsicherheiten der Beobachtungen kann man nicht genau sagen wie langsam das Objekt
gewesen sein muss. Aber wahrscheinlich war es langsamer als die Fluchtgeschwindigkeit,
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Abb. B.11: Das Erdmagnetfeld wirkt als Schutzschirm gegen die energiereichen Teilchen des Sonnenwindes.
Das Bild stammt von http://surf.to/planeten.

die es benötigt unser Sonnensystem zu verlassen, was nichts anderes heisst, als dass das
Objekt um unsere Sonne kreist.

Es gibt noch weitere Indizien, die für die Nemesis-Hypothese sprechen. So haben
manche Wissenschaftler versucht die rätselhafte Bahn von Sedna, einem transneptunis-
chen Objekt, das 2003 entdeckt wurde, mit einem noch nicht entdeckten Sonnenbegleiter
zu erklären.

Mein Lieblingsindiz ist wohl gleichzeitig auch das umstrittenste: Erdmagnetfeldumkeh-
rungen. Wie Sie wissen, zeigt die Nadel eines Kompasses in Richtung Norden. Das war
aber nicht immer so. Aus den Gesteinsschichten können wir ablesen, dass im wieder in
der Erdgeschichte die Kompassnadel nach Süden gezeigt hätte. Im Mittel finden solche
Erdmagnetfeldumkehrungen etwa alle 250 000 Jahre statt. Nun gibt es Hinweise, dass sich
Erdmagnetfeldumkehrungen im gleichen 26 Millionen Jahren Rhythmus wie die Masse-
naussterbeereignisse häufen. Es wurde auch ein plausibler Mechanismus vorgeschlagen, der
erklärt wie ein Meteoriteneinschlag das Erdmagnetfeld vorübergehend ausschalten kann
(Muller and Morris 1986). Schaut man sich die Verformung des Erdmagnetfeldes unter
dem Einfluss des Sonnenwindes an (Abb. B.11), möchte man sich nicht ausmalen, was ein
Versagen dieses Schutzschildes für Folgen für das Leben auf der Erde hätte.

Man darf aber nicht vergessen, dass geologische Befunde oft mit grossen Unsicher-
heiten behaftet sind und man sie deshalb auf vielfältige Art und Weise interpretieren kann.
Deshalb sind auch die meisten Wissenschaftler sehr skeptisch gegenüber der Idee eines
Sonnenbegleiters. Ein gesundes Mass an Skepsis ist hier auch sicherlich angebracht.

Der ultimative Test der Nemesis-Theorie ist natürlich die Entdeckung des Sonnenbe-
gleiters selbst. Der Schlüssel zur Entdeckung von Nemesis ist sicherlich ihre grosse Nähe

http://members.chello.at/planetensystem/erde.htm
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zu uns und folglich ihre grosse Parallaxe. Als Parallaxe bezeichnet man die scheinbare
änderung der Position eines Objekts wenn der Beobachter sich bewegt. Wenn Sie Ihren
ausgestreckten Zeigefinger vor Ihr Gesicht halten und ihn abwechslungsweise einmal mit
dem linken und einmal mit dem rechten Auge betrachten, können Sie beobachten wie Ihr
Finger vor dem weiter entfernten Hintergrund hin und her springt. Genauso springt ein
naher Stern gegenüber den weit entfernten hin und her, wenn wir ihn einmal im Winter
und einmal im Sommer beobachten, weil die Erde in dieser Zeit von einer Seite der Sonne
zur gegenüberliegenden gewandert ist.

Die Parallaxe ist umso grösser je näher der Stern ist. In der Astronomie wird die
Parallaxe normalerweise in Bogensekunden angegeben. Ein Bogensekunde ist der 3 600ste
Teil eines Winkelgrades. In einer Entfernung von 2.4 Lichtjahren würde Nemesis eine
Parallaxe von etwa 1.3 Bogensekunden aufweisen. Das ist in etwa der Winkel unter dem
man einen Golfball auf der Spitze des Empire State Building in New York sieht – und zwar
von hier aus. Das hört sich nach wenig an, ist aber heutzutage problemlos messbar.

Neben der schwachen Leuchtkraft und der kleinen Eigenbewegung kommt noch die
Schwierigkeit hinzu, dass wir nicht genau wissen wo wir am Himmel nach Nemesis suchen
sollen. Wo sollen wir also anfangen zu suchen? Die vorher erwähnten Computerrechnung
haben gezeigt, dass Nemesis’ Bahn stabiler ist, wenn sie in der Galaktischen Ebene liegt.
Der Grund hierfür sind hauptsächlich die Gezeitenkräfte der Milchstrasse. Der Nemesis-
Orbit darf also bezüglich der Galaktischen Ebene nicht zu stark geneigt sein. Eine Inklina-
tion von mehr als 30 Grad scheint mit den geologischen Befunden nur schwer vereinbar zu
sein (Torbett and Smoluchowski 1984). Wir erwarten also, dass Nemesis irgendwo vor dem
Hintergrund der Milchstrasse zu finden ist, was die Suche nicht gerade einfacher macht.

Auch mithilfe der Bahnen der vorher erwähnten Gruppe langperiodischer Kometen kann
man die Position von Nemesis einschränken. Diese Kometenbahnen weisen eine mittlere
Neigung von etwa 28 Grad gegenüber der Milchstassenebene auf. Nehmen wir an, dass
diese Kometengruppe von Nemesis geschickt wurden, können wir schliessen, dass Nemesis
in der selben Ebene um die Sonne kreist. Eine Neigung von 28 Grad liegt, was die Stabilität
der Bahn angeht, gerade noch drin. Weiterhin weist uns die Konzentration der Kometen-
Aphelien am Himmel die Stelle von Nemesis’ Perhihel. Da wir wissen, dass Nemesis vor
etwa 11 Millionen Jahren zuletzt der Sonne am nächsten war, können wir also ihre heutige
Position am Himmel grob abschätzen.

So kann man schliessen, dass Nemesis, falls sie existiert, wahrscheinlich im Sternbild des
Drachen zu finden ist, das ganz in der Nähe des kleinen Bären, auch kleiner Wagen genannt,
liegt. Das systematische Suchprogramm, dass von Muller und anderen Mitte der 80er Jahre
begonnen wurde, wurde wegen technischen Schwierigkeiten bald darauf wieder eingestellt.
Glücklicherweise sind für die nahe Zukunft mehrere Himmelsdurchmusterungen geplant,
wie zum Beispiel “Pan-STARRS”, dass nächstes Jahr auf Hawaii in Betrieb gehen soll und
“LSST” das voraussichtlich ab 2014 von Chile aus den Himmel durchforsten wird. Falls
Nemesis existiert, wird sie durch einen dieser Himmelsdurchmusterungen gefunden werden.
Wird sie dabei nicht gefunden, darf ihre Existenz mit ruhigem Gewissen ausgeschlossen
werden.
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Falls wirklich ein Begleiter der Sonne gefunden wird, wäre das eine Sensation. Die Be-
deutung einer solchen Entdeckung kann nicht genug betont werden. Nicht nur dass wir die
Geschichte der Entwicklung des Sonnensystem neu schreiben müssten, auch die Evolution
des Lebens auf der Erde würde plötzlich in einem völlig neuen Licht stehen. Es zeigt sich,
dass die Zeit nach einem Massenausterben geprägt ist von einem munteren Spriessen neuen
Lebens. Arten, die die Katastrophe überlebten, füllen in Windeseile die frei gewordenen
ökologischen Nischen. Neue Arten entstehen – fast so rasch wie sie zuvor verschwanden.
Manche Evolutionsbiologen halten es durchaus für möglich, dass die Evolution stagniert
wäre, wenn nicht wiederholt ein Grossteil des Lebens vernichtet worden wäre.

Es sieht so aus, als ob zu Darwins Prinzip, “survival of the fittest”, dem Überleben
des am besten Angepassten, noch ein zweites wichtiges evolutionäres Prinzip hinzukommt:
“survival of the first”, das Überleben des Ersten. Neue Arten können nicht gedeihen wenn
bereits alle Nischen besetzt sind. Wären die Dinosaurier nicht ausgestorben, hätten sich
die Säugetiere wahrscheinlich niemals so erfolgreich ausbreiten können und auch wir Men-
schen hätten uns wahrscheinlich nicht entwickelt. Die Erkenntnis, dass die Entwicklung
des Lebens regelmässig “von aussen” entscheidend beeinflusst wurde, ist von grösster Be-
deutung. In einem Artikel aus der New York Times liest man im Jahre 1984 vor dem
Hintergrund des Kalten Krieges:

Möglicherweise hat uns Darwin dazu verleitet zu denken, dass unser überleben
vom Konkurrenzkampf mit anderen Lebewesen abhängt. Die Existenz von
Nemesis, dem Todesstern, könnte genau das sein, was unsere Spezies braucht
um zu erkennen, dass die wahre Bedrohung unserer Existenz nicht andere Men-
schen sind.

Auch bei der Entstehung des Lebens selbst könnte Nemesis eine Rolle gespielt haben.
So wird von manchen Wissenschaftlern vermutet, dass das gesamte Wasser und die At-
mosphäre unseres Planeten sowie die für die Entstehung von Leben nötigen chemische
Ausgangsstoffe von Kometen stammt (Delsemme 2001).

Auch wenn Nemesis nicht gefunden wird, hat uns diese Geschichte doch gezeigt, wie eng
die Evolution des Lebens auf der Erde mit unserer kosmischen Nachbarschaft verknüpft
sein könnte. Sie zeigt auch, dass die grossen Rätsel der Wissenschaft nicht innerhalb einer
einzigen Fachdisziplin gelöst werden können. Die Nemesis-Theorie überspannt viele Fach-
bereiche: Von der Astronomie über die Geologie bis hin zur Paläontologie. Ich glaube, dass
genau einen solch interdisziplinärer Ansatz nötig ist, um das Geheimnis unseres Ursprungs
zu lüften.

Dieses Jahr ist sowohl Galileo Galilei als auch Charles Darwin gewidmet. Beide Wis-
senschaftler haben unser Weltbild revolutioniert. Beide zeichneten sich durch zwei wichtige
Eigenschaften aus (ausser dem Bart): Sie waren neugierig und hatten eine grosse Geduld.
Zwei Eigenschaften, die auch auf Sie zutreffen, meine Damen und Herren. Sie waren
neugierig genug um hier herzukommen und Sie hatten die Geduld mir bis zum Schluss
zuzuhören.

Dafür danke ich Ihnen!
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B.3 Cycles in fossil diversity and extragalactic cosmic

rays

This talk was given in the Journal Club at the Physics Department of the University of Basel on

March 12, 2009.

Gentlemen,

I welcome you to this year’s spring semester journal club. As you know, 2009 is dedi-
cated to two men, both of them has fundamentally changed the way we look at the world.
Galileo Galilei founded modern astronomy; Charles Darwin founded the theory of evolu-
tion. On this occasion, I would like to start this year’s journal club, with a topic that – in
some sense – connects the fields of this two bearded men.

While looking for such a topic I came across two articles. First a Nature article by
Robert Rohde and Richard Muller published almost exactly four years ago (Rohde and
Muller 2005). In that article the authors reveal an unexpected and highly significant 62-
Myr cycle in fossil diversity. They could, however, not find a plausible explanation for this
cycle.

In the second paper, published 2007 in the Astrophysical Journal, Mikhail Medvedev
and Adrian Melott propose a mechanism that explains the periodicity in biodiversity in
terms of periodic cosmic ray (CR) enhancements (Medvedev and Melott 2007). Let me first
briefly describe Rohde & Mullers study before I focus on Medvedev & Melotts astrophysical
explanation of the periodicity in life’s diversity.

The study by Rohde and Muller is based on Sepkoski’s Compendium, which was pub-
lished posthumously in 2002 (Sepkoski 2002)1. It is the most extensive compilation avail-
able, listing more than 36 000 marine genera together with the corresponding first and
last stratigraphic appearances. Sepkoski’s database has a very simple structure, which I
illustrated here with the genus Aviculopecten:

D (Fame-u) – P (Dora)

These bivalve molluscs are first observed in the upper substage of the Famenian stage of the
Devonian period, whereas its last appearance is in the Dorashamian stage of the Permian
period. Here (Fig. B.12), we see a fossil of a member of Aviculopecten found in the lower
Carboniferous.

Devonian, Carboniferous, Permian, and so on, are names given by geologists and pale-
ontologists to distinguish between different layers of Earth. However, without assigning an
age to those layers no analysis of the fossil diversity is possible. This becomes especially
clear when we look at the definition of “diversity” used by Rohde & Muller: “Diversity is
the number of distinct genera alive at any given time.”

1Online accessible at http://strata.geology.wisc.edu/jack/

http://strata.geology.wisc.edu/jack/
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Figure B.12: Aviculopecten subcardiformis

from the Logan Formation, Mississippian,
Ohio. Photograph taken by Mark A. Wil-
son, Department of Geology, The College
of Wooster.

‘Time’. We need to assign a geologic time scale
to the stratigraphic layers. Such a time scale is pro-
vided by the International Commission on Stratigra-
phy (ICS). Rohde & Muller adopted the latest avail-
able at that time, the ICS2004 time scale. It gives
dates for layers of Earth as far back as the begin-
ning of the Cambrian period, which according to the
ICS2004 time scale was 542 Myr ago. The dating is
mainly based on the Potassium-argon technique; a
radiometric dating method often used in geochronol-
ogy and archeology. With this calibration Avicu-
lopecten’s first appearance in the upper Famian was
between 364.3 and 359.2 Myr ago, whereas its last
breath was somewhere between 253.8 and 251.0 Myr
ago. Thus, Aviculopecten has lasted for more than
100 Myr. We see that Aviculopecten’s first appear-
ance, its origination, is given within 5 Myr, whereas
its extinction is resolved within 3 Myr. Some gen-
era in Sepkoski’s database are given at a much lower
resolution, at period level or even only at epoch level. Rohde & Muller exclude all such
poorly resolved genera from the analysis. Furthermore, they exclude all genera known only
from a single stratum. This refinement process discards fully half of the data set; about
18 000 well-resolved genera remain.

The story about the question whether life’s diversity drops and rises periodically, goes
back to the 70s. Rohde & Muller revive this question and address it by means of Fourier
analysis. Before doing a Fourier analysis, the authors make sure to filter out the lowest-
frequency components of the signal. For this purpose, they calculate the best-fitting cubic
polynomial and subtracted it from the data. This ‘detrending’ method imposes a lower
limit to the Fourier spectrum, which corresponds in this case here to periods greater than
200 Myr. The low-frequency components would otherwise dominate the spectrum and
obscure everything else.

But let us now finally look at Rohde & Muller’s figure 1, which shows the fossil diversity
against time (Fig. B.13). The green plot ‘a’ is for all genera in Sepkoski’s Compendium.
The black plot ‘b’ represents the data from the well-resolved subsample. The smooth
blue curve is the best-fitting cubic polynomial, which is subtracted from the black plot
to detrend the data. The residual plot ‘c’ left by this subtraction shows no large-scale
features. This is the data that is submitted to Fourier analysis and its Fourier spectrum
is shown in the inset ‘e’ as black line. A strong peak at a period of 62 Myr dominates the
spectrum. There is a second spectral peak, with a period of 140 Myr.

Rohde & Muller determined the statistical significance of the cycles by estimating the
background in two different ways, denoted by ‘R’ (red line) and ‘W’ (blue line), respectively.
I do not want to go into the details of the background calculations here. However, on the
basis of these backgrounds, the probability of observing a peak at least as strong as the
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Figure B.13: Genus diversity reproduced
from Rohde and Muller (2005). The green
plot (‘a’) shows all genera from Sepkoski’s
Compendium, converted to the 2004 Geologic
Time Scale. The black plot (‘b’) shows the
same data, with single occurrence and poorly
dated genera removed. The blue line is a cu-
bic polynomial fitted to the data and used for
‘detrending’. ‘c’ shows the detrended data
from ‘b’ with a 62-Myr sine wave superim-
posed. ‘d’ shows the detrended data (‘c’) after
subtraction of the 62-Myr cycle with a 140-
Myr cycle overplotted. Dashed vertical lines
indicated the five major extinctions. The in-
sert (‘e’) shows the Fourier spectrum of ‘c’.
Estimates of the backgroud noise signal are
shown as blue (‘W’) and red (‘R’) lines. At
the bottom are shown conventional symbols
for major stratigraphic periods. c© Nature
Publishing Group.

62-Myr and 140-Myr spectral peaks were computed and are shown in Rohde & Muller’s
table 1 (table B.1 here). Both the probability of finding the indicated peak at the specified
frequency and more generally the probability of finding a similar peak at any frequency is
considered. The 62-Myr peak is highly significant: the probability of occurring anywhere
in the spectrum by chance is less than 1%. By contrast the 140-Myr cycle can plausibly
result from purely random processes.

Rohde & Muller also show that the 62-Myr cycle is robust to various analysis techniques
and emerges clearly also if all genera are included in the analysis, provided that the ISC2004
time scale was used. They emphasise that “observing a 62-Myr cycle in fossil diversity is
a necessary and unavoidable consequence of combining the Sepkoski compendium and the
ICS2004 geologic time scale”. In fact, when an older time scale was used, the 62-Myr peak
would be of only questionable significance.

Rohde & Muller discuss several processes that might cause a periodicity in the fossil
data. However, none of them appears to be suitable to explain the strong 62-Myr cycle.
We also do not know whether this cycle is a variation in true diversity or only in observed
diversity. But either case requires explanation.



B.3. CYCLES IN FOSSIL DIVERSITY AND EXTRAGALACTIC COSMIC RAYS 125

Table B.1: Likelihood of similar cycles (reproduced from Rohde and Muller 2005)

Probability of peaks At this frequency Anywhere in spectrum
R W R W

62 Myr < 5 × 10−5 3.6 × 10−4 < 0.0013 0.010
140 Myr 0.12 0.0056 0.71 0.13

As already mentioned, Medvedev & Melott have proposed an explanation of the 62-
Myr cycle in terms of EGCRs. Let us briefly discuss how CRs might affect biodiversity on
Earth.

Figure B.14: When energetic cosmic rays strike
the Earth’s atmosphere avalanches of energetic
secondary particles are produced that can be
dangerous or lethal to some organisms. c© Si-
mon Swordy (University of Chicago), NASA.

CRs are high-energy charged particles that
travel at nearly the speed of light and strike the
Earth from all directions. When penetrating into
the Earth’s atmosphere, they produce avalanches
of energetic secondary particles that are danger-
ous or lethal to some organisms (Fig. B.14). Es-
pecially muons can reach the Earth’s surface and
damage the DNA even in deep-sea and deep-
earth animals.

Another mechanism is climate change. There
is good evidence that the ions produced by
CRs in the atmosphere support cloud formation.
There is also an ongoing experiment at CERN,
called “CLOUD”, designed to study the seeding
of clouds by CRs. More clouds will increase the
planetary albedo, what in turn is believed to cool
down the global climate. That a cooler climate
is associated with a lower biodiversity is rather
well documented: The highest diversity is found
in the tropics, for example.

CR ionisation also triggers lightening dis-
charges. This in turn affects the atmospheric
chemistry due to the ozone and nitrogen oxides produced by lightening. Both are known
to have harmful effects on animals, whereas the rainout of nitrogen oxide as nitric acid
can be particularly destructive for life. On the other side, nitrogen oxides are also known
to damage the protecting ozone layer. An increased solar UVB radiation can kill the
phytoplankton, which is the base of most of the marine food chain.

So, a strong increase in CR flux may affect biodiversity in several ways. Medvedev
& Melott do not advocate any particular mechanism and they emphasise that detailed
research is required to quantify the effects of the mentioned mechanisms. Let us now turn
to Medvedev & Melott’s explanation of the 62-Myr cycle in fossil diversity.
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Figure B.15: The Virgo Galaxy cluster is the biggest mass concentration in our galaxy’s neighbourhood
and lies in the direction of the NGP. The bright elliptical galaxy near the centre is M86. Photograph taken
with the 4-meter Mayall Telescope of Kitt peak National Observatory in 1974. c© NOAO/AURA/NSF.

As the solar system orbits once in 250 Myr around the Galactic centre, it oscillates
up and down, vertically to the Galactic disk. It has long been known that this vertical
oscillation has a period of about 63 Myr and amplitude of circa 70 pc (∼ 230 ly). This coin-
cidence of the period with the 62-Myr cycle in fossil diversity is very interesting. Medvedev
& Melott have noticed that times of major fossil diversity drop coincide with the times
when the solar system was located north most in the Milky Way. The authors estimate
that this coincidence has a chance of 1 in 10 000 000 to occur at random.

As the title of their paper already suggests, they consider extragalactic cosmic rays
(EGCR) as a possible cause of the 62-Myr cycle in fossil diversity. CRs are most dangerous
to the Earth biota at energies around a TeV because they and their secondaries have the
largest flux in the lower atmosphere. Lower energy CRs are attenuated by the Earth’s
magnetosphere, whereas the flux of the higher energy particles rapidly decreases with
energy. Near the Galactic mid-plane life on Earth is protected from those EGCR by the
Galactic magnetic field. This shielding effect diminishes when the Sun is far away from
the Galactic mid-plane. As mentioned before, an increased CR flux can cause all kinds of
problems with the climate as well as directly damage the DNA of animals.

But why should there be more dangerous cosmic rays on the north side than in the
south? What is particular about the northern Galactic hemisphere?

In the direction of the NGP lies the biggest mass concentration in our galaxy’s neigh-
bourhood: the Virgo Galaxy cluster. The image (Fig. B.15) shows a smaller section of the
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Figure B.16: Cartoon of the “galactosphere” reproduced from Medvedev and Melott (2007). The termi-
nation and bow shocks are sources of EGCR. Due to the asymmetry caused by the Virgo Cluster, which
is nearly at the NGP, the cosmic-ray flux on the north side of the Milky Way Galaxy is larger than at the
south side. c© The American Astronomical Society.

Virgo cluster. The two bright elliptical galaxies are M86 and M84. The enormous mass of
the Virgo cluster dominates our intergalactic neighbourhood and the Milky Way is falling
with 200 km/s towards the Virgo cluster.

Let us look at Medvedev & Melott’s Figure 1 (Fig. B.16 here) to illustrate how this
motion of our Galaxy affects the global geometry of the ”galactosphere”. Like in a gigantic
spaceship our Galaxy is plowing with 200 km/s through the intergalactic medium (IGM).
This supersonic motion breaks the north-south symmetry of the galactosphere and pushes
the center of the Galactic wind halo, indicated by the blue halo in the figure, well south
of the Galactic disk. Like a ship that generates a bow wave when cruising the sea, it is
believed that the Milky Way is headed by a huge bow-shock front. Medvedev & Melott
expect this shock front to produce CRs energetic enough to make their way to the Galactic
disk against the plasma wind.

This Galactic wind is produced by young massive stars and their deaths in form of
supernova explosions, the so-called starburst wind. It consists of charged particles, mainly
protons, having as well a supersonic velocity of about 200 km/s and it has blown away
the intergalactic gas around our Galaxy. In the region where the pressure of the Galactic
wind equals that of the intergalactic gas, the particles are slowed down abruptly. This
produces a shock front, the so-called termination shock, much like the shock wave of a
supersonic jet. According to the estimations of Medvedev & Melott, the northern part of
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Figure B.17: Detrended diversity variation from Rohde and Muller (blue line) and EGCR flux at the Earth
calculated from the Medvedev and Melott model (red line). Each maximum in CR flux coincides with a
minimum of the diversity cycle within few Myr. Figure reproduced from Medvedev and Melott (2007).
c© The American Astronomical Society.

the termination shock, which is closer to the Galaxy, constitutes a natural source of CRs
with energies around the critical value of a TeV.

The termination and bow-shock are presumed to be the dominant sources of EGCRs
reaching the Earth. Given the proximity of the Milky Way’s north side to the two shock
fronts, it becomes clear why the solar system would experience a maximum flux of CR
whenever it is at its farthest northward excursion. At our present location – near the
Galactic mid-plane – we are well shielded from EGCR due to the Galactic magnetic field.
Therefore, it will be very difficult to observe the anisotropy in EGCR flux predicted by
Medvedev & Melott, in particular because the observed flux is dominated by Galactic
sources, such as supernova explosions. But let me come back later on to the observational
predictions of Medvedev & Melott’s model.

The next figure (Fig. B.17) shows again the detrended diversity from Rohde & Muller
in blue and the computed EGCR flux on Earth versus time. For each CR maximum there
is always a diversity minimum within few Myr. A number of statistical tests have been
performed in order to address the significance of the correlation between fossil data and
modeled CR flux. The tests show that the observed correlation is most probably not due
to chance.

Now, the Sun does not only oscillate vertically, up and down in the disk, but also in
radial direction, back and forth to the Galactic centre. This radial motion causes variations
in the vertical amplitude, because the density of the Galactic disk increases towards the
Galactic centre. A variation in amplitude causes, according to Medvedev & Melott’s model,
also a variation of the EGCR flux maxima. The radial oscillations of the solar system were
included in the calculation, causing the modulation of the CR maxima that you can see in
the figure.
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Figure B.18: Extinction strength (blue line) and the amplitude of the EGCR flux (red line). The correlation
is about 93% and has a chance of less than 1 in 1 000 to occur at random. Figure reproduced from Medvedev
and Melott (2007). c© The American Astronomical Society.

It is now interesting to ask, whether the amplitude of the CR flux variation in each
cycle is correlated to the magnitude of the corresponding drop of diversity. To answer
this question, the authors define the ‘extinction strength’ as the difference between the
minimum in diversity nearest to the corresponding CR maximum and its preceding diversity
maximum. The magnitude of the CR flux variation is calculated analogously: Maximum
flux minus preceding minimum flux.

The results are shown in this figure (Fig. B.18). It shows an impressively strong correla-
tion between the amplitude of CR flux variation (red line) and the corresponding diversity
drop (blue line) in each cycle. Medvedev & Melott write that “This provides a very solid
and independent confirmation of the model, which provides a natural mechanism for ob-
served cycles in fossil diversity.”

The anisotropy in CR flux predicted by Medvedev & Melott’s model could possibly be
observed. The authors discuss various scenarios how to verify or falsify their hypothesis.
The most promising among them is to look for an excess of pion decay products, i.e. gamma
rays and neutrinos, from the north Galactic hemisphere. Pions are produced when CR
protons interact with the interstellar medium in the Galaxy. The authors predict the
emission of ∼ 2 GeV photons with a flux of ∼ 1% of the cosmic gamma-ray background
at this energy. Detection of this excess emission seems a feasible task for GLAST (which
is now called ‘Fermi Gamma-ray Space Telescope’). Similarly, they predict the excess of
∼ 900 MeV neutrinos which may be a good target for the IceCube Neutrino Observatory
which is currently under construction at the South Pole.

Even if the work of Medvedev & Melott is merely a first step towards an explanation
of the cycles in fossil diversity, I think it is a beautiful example of how the evolution of life
on Earth may be related to astrophysical processes.

Thank you!
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Duchêne, G. Planet Formation in Binary Systems: A Separation-Dependent Mechanism?
ApJL, 2010. vol. 709, pp. L114–L118.

Duquennoy, A. and Mayor, M. Multiplicity among solar-type stars in the solar neighbour-
hood. II – Distribution of the orbital elements in an unbiased sample. A&A, 1991. vol.
248, pp. 485–524.

Faltenbacher, A., Li, C., White, S. D. M., et al. Alignment between galaxies and large-scale
structure. Research in Astronomy and Astrophysics, 2009. vol. 9, pp. 41–58.

Fedele, U. Le prime osservazioni di stelle doppie. Coelum, 1949.
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Mugrauer, M., Neuhäuser, R., and Mazeh, T. The multiplicity of exoplanet host stars.
Spectroscopic confirmation of the companions GJ 3021 B and HD 27442 B, one new
planet host triple-star system, and global statistics. A&A, 2007. vol. 469, pp. 755–770.



138 BIBLIOGRAPHY

Muller, R. Nemesis. The death star. Weidenfeld & Nicolson, New York, 1988.

Muller, R. A. and Morris, D. E. Geomagnetic reversals from impacts on the earth. Geo-
physical Research Letters, 1986. vol. 13, pp. 1177–1180.

Munn, J. A., Monet, D. G., Levine, S. E., et al. An Improved Proper-Motion Catalog
Combining USNO-B and the Sloan Digital Sky Survey. AJ, 2004. vol. 127, pp. 3034–
3042.

———. Erratum: ”an Improved Proper-Motion Catalog Combining Usno-B and the Sloan
Digital Sky Survey” (2004, AJ, 127, 3034). AJ, 2008. vol. 136, p. 895.

Ondra, L. A New View of Mizar. Sky & Telescope, 2004. vol. 108, 1, p. 72.
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dort im Sommer 2000 die Maturitätsprüfung Typus B ab. Im Wintersemester 2000/01

immatrikulierte ich mich an der Philosophisch-Naturwissenschaftlichen Fakultät der

Universität Basel, wo ich im Hauptfach Theoretische Physik und in den Nebenfächern
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