
SSE and GPU with NBODY6

Keigo Nitadori and Sverre Aarseth

We provide some notes on the use of the SSE (Streaming SIMD Extension) and GPU
(Graphics Processing Unit) versions for running NBODY6, first developed at the Institute
of Astronomy in April 2008. As before, the standard code is compiled by typing make

nbody6 in the directory Ncode and there are no new routines inside the Makefile. For
the GPU version, type make gpu in dir GPU. Please check the array sizes defined in the
main directory by params.h.

Hardware requirements for the SSE/GPU versions are either a multi-core CPU of
the type x86 or x86 64 processors with SSE/SSE2 support and/or a GPU with CUDA
support. Core2 Quad with 64-bit OS is recommended for high performance calculations
with SSE. GeForce 8800 GTS/512 or GeForce 9800 GTX is adequate for single GPU.

Software requirement: GCC officially supports OpenMP (option -fopenmp) from ver-
sion 4.2. However, CUDA 1.1 does not work with GCC 4.2. Hence in some distributions,
GCC 4.2 is needed for host compilation and 4.1 for the GPU code. Since Fedora with
GCC 4.1 supports OpenMP unoficially, it can be used for both compilations.

The directory GPU has a few extra Fortran routines which contain the new procedures,
as well as some modified standard routines. The subdirectory lib holds the GPU library.
To obtain the GPU version nbody6.gpu, type make gpu in the directory GPU while make

sse produces nbody6.sse. In both versions we use the OpenMP directives in some
routines. The executables are sent to the run subdirectory GPU/runs which also contains
a selection of simple input templates (or see dir Docs). Input for different simulations
remain the same as before, with most options having the usual meaning (but see below).

Users can specify the number of threads per process by setting the environment vari-
able OMP NUM THREADS. Since we use multiple cores, the CPU time given in the output may
be larger than the wall-clock time. The actual time for data send and gravity calculation
is given on the screen at the end, together with the corresponding Gflops.

Some comments on the extra routines in dir GPU or lib.

gpunb.gpu.cu: main routine for GPU library in CUDA (dir lib).

intgrt.omp.f: integration flow control for GPU or SSE (also parallelized).

gpucor.f: regular force corrector and irregular force loop.

cmfirr.f: irregular force on perturbed c.m.’s.

cmfirr2.f: irregular force on singles due to c.m.’s.

kspert.f: KS perturbation force loop done in C++ by cnbint.cpp.

nbintp.f: parallel irregular force corrector with fast neighbour force.

1



nbint.f: irregular force corrector with fast neighbour force (blocks < NPMAX).

cnbint.cpp: neighbour force loop (written in C++ with SSE).

adjust.f: standard energy check routine but calls energy2.f.

gpupot.cu: fast evaluation of all potentials on GPU (in dir lib).

energy2.f: summation of individual potentials after differential correction.

phicor.f: differential potential corrections due to binary interactions.

swap.f: randomized particle swapping at T = 0 (reduces crowding).

Optimization:

Optimized performance is achieved by minimizing the number of overflows which re-
sults in the last block members (< NIMAX) being recalculated. However, small average
neighbour numbers (also in #9 output line) may affect the accuracy. Based on prelimi-
nary tests, a relatively large value of NNBMAX and option #40 = 2 (or 3 for decreasing
NNBMAX after escape) appears to be a good strategy. The fast routine cnbint.cpp is
used by gpucor.f, nbint.f, nbintp.f and kspert.f. Note that all arguments are offset by -1
in cnbint.cpp for consistency with the C++ convention.

Overflows:

Overflows may occur in two different ways. There are 32 blocks for use on the GPU.
Thus if the maximum neighbour number is 400 and the indices are distributed evenly,
there would be 400/32 members in each block. Thus a random distribution would be
within the permitted range nearly all the time. However, crowding in the first bin due
to mass segregation and terminated KS components with small time-steps may occur at
later times. The former effect is alleviated by initial random swapping of particle indices
(but not names) after data allocation. Hence neighbour lists are sequential with masses
randomized.

Options:

In order to save time on the host (large N only), #38 = 2 restricts the neighbour force
derivative corrections to 1 % regular force change, while for #38 = 1 all corrections are
done. The CPU time may also be reduced by saving the common blocks on fort.1 only at
every main output as a backup for rare restarts (#1 = 2 and #2 = 0). Option #40 >= 2
stabilizes the average neighbour number (in adjust.f) on a fraction of the maximum (e.g.
NNBMAX/5) for small overflow numbers. The overflow counters (#9 OVERFLOWS;
current and accumulated) at main output provide useful diagnostics of the behaviour (#33
>= 2). To be consistent with decreasing particle numbers, the maximum membership is
reduced by a square root relation scaled by the initial value (#40 = 3).

2


