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1 Introduction

This is a User Manual for NBODY 6, a code that has been extensively tested since it was
first developed around 1992. This code is mainly intended for laptops and workstations
with UNIX operating system and GPUs. A parallel implementation called NBODY 6++ for
PC clusters and supercomputers is also available [Wang et al. 2015].

The code relies on many features of the classical NBODY 5 which dates back to the
late 1970s. The subsequent change from a divided difference formulation to Hermite in-
tegration [Makino 1991] led to a complete revision. Briefly stated, single particles and
centre-of-mass systems are integrated by the Ahmad–Cohen [1973] neighbour scheme us-
ing the fourth-order Hermite method [Makino & Aarseth 1992] (for the parallel version see
Aarseth 1999). Binaries and close two-body encounters are studied by the Stumpff version
of Kustaanheimo–Stiefel [1964, KS] regularization [Mikkola & Aarseth 1998], while inter-
actions of compact subsystems are calculated by the chain regularization method [Mikkola
& Aarseth 1990, 1993, 1996]. Moreover, strong interactions in unperturbed triples and
quadruples are treated by three-body [Aarseth & Zare 1974, AZ] and Heggie [1974] global
regularization [Mikkola 1985]. Finally, hard triples and higher-order systems satisfying a
stability criterion [Mardling & Aarseth 1999, Mardling 2008, Valtonen 2014] are reduced
to two-body configurations (so-called ‘mergers’ as opposed to collisions). All the relevant
equations of motion are derived and discussed extensively in a book [Aarseth 2003], to-
gether with algorithms which may be helpful when examining the FORTRAN procedures.
Hence familiarity with the book is beneficial for understanding the code.

Several aspects of synthetic stellar evolution, such as mass loss, tidal circularization
and collisions have been incorporated while still maintaining energy conservation by means
of appropriate correction procedures. The early scheme used fast fitting functions for the
radii and luminosities of single stars of solar metallicity [Eggleton, Fitchett & Tout 1989],
with imposed wind and supernova mass loss. Binary evolution and collisions were sub-
sequently included [Tout et al. 1997]. Finally, an extension to lower metallicities was
implemented [Hurley, Pols & Tout 2000]. Note that the private GRAPE6 code NBODY 4 con-
tains several important astrophysical processes which were included in the November 2007
release (e.g. Roche-lobe overflow and spin–orbit coupling). Moreover, NBODY 6 contains
new procedures for a general 3D galactic potential. The code itself can be downloaded
from the web in the form of a compressed tar file.1

1ftp.ast.cam.ac.uk/pub/sverre.
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2 Code structure

The whole code consists of some 55,000 lines including comments and layout space. It
is written in FORTRAN and is f77 compliant but also compiles with g77, Intel or f95
(ignore warning messages of non-standard expressions). There are about 330 routines
altogether, mostly with mnemonic names of maximum six characters. Likewise, almost
all the FORTRAN statements are in upper case while the comments are in lower case. The
coding generally conforms to a strict style and layout for clarity.

The main code relies heavily on a general common block called common6.h which con-
tains a large number of arrays (mostly size N) and many useful scalars. This enables a
calculation to be split into several parts by saving all the common variables after a spec-
ified CPU time (or by a ‘touch STOP’ facility at arbitrary times, see below), followed by
a restart. Except for some special situations, this gives rise to reproducible results which
are essential for experimental purposes as well as diagnostic investigation.

The code consists of three main parts: input, output and integration, with the
latter split into several large routines employing different methods. Thus a smooth running
relies on treating a range of special cases by the appropriate algorithm. However, the
decision-making requires very little overheads. A number of optional procedures are
included but care is needed to avoid mutual inconsistencies since only some parameter
values and no options are checked (routine verify.f).

3 Getting started

Once the file nbody6.tar.gz is downloaded and uncompressed, the routines are extracted
by ‘tar xvf nbody6.tar’ and copied to eight directories: Ncode, Chain, Nchain, Docs,

Block, ARchain, ARint, GPU2. The first contains the main code, while Chain holds the
basic chain procedures and Nchain provides the corresponding N -body interface. A num-
ber of useful files, such as test input templates, listing in TeX of all routines and the
structure of the old code NBODY 5 are included in the directory Docs.

The size of most large common arrays is given by the parameter file params.h and
defined in Table 1. Depending on available memory, it is recommended to limit the max-
imum array sizes somewhat but still leave room for bigger calculations; this will facilitate
examining common blocks using the same read statements for different memberships. Note
that the files params.h and common6.h are also used in the interface directories Nchain,
ARint, Block, GPU2 by a soft link definition. Once these parameters have been specified
(dir Ncode), the correct size of the common block is calculated automatically in routine
mydump.f. The original modest choice of parameters (Nmax = 4010) produces a common

block of about 4 Mb.
Before compiling, check the FORTRAN directives in the Makefile, i.e. whether f77 or

gfortran and use the highest optimization level. Compile by ‘make nbody6’ which should
produce the executable nbody6. One possible reason for failure could be the CPU timer
function etime in routine cputim.f which is system dependent. Any other complaints
and strange run-time behaviour should be reported after making every effort to ascertain
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the problem. For frequent usage it is recommended to create separate working directories.
It is also a good idea to save the new source files before making changes.

To start a test run, place the executable and a template input file input in one direc-
tory and type the command ‘nbody6 < input > output &’ (or ’time’ first). Although
the results are machine- and compiler-dependent, it is expected that the run will finish
normally but there is always a chance that some difficult configuration may occur.

The restart facility can be tested as follows. First specify option # 1 = 1 as input.
This will ensure a common dump on fort.1 if the CPU time is exceeded or TIME >=
TCRIT, with TCRIT given in the input file. The calculation can then be continued from the
common save by ‘nbody6 < rs > output2 &’, using the restart input file ‘KSTART TCOMP’.
Here KSTART = 1 denotes a new run (followed by the required input) or = 2 for standard
restart, and TCOMP is the CPU time in minutes. Also note the possibility of reading some
new parameters at restart if KSTART > 2 (see routine modify.f and the restart file rs).
Before restarting in the same directory, any important output files in capitals (e.g. ESC,

OUT9) must be renamed and/or deleted (likewise any fort.82 and fort.83 with # 12).
The code includes an optional provision for automatic error checking. Thus if option

# 2 = 2, any output interval with relative energy error |∆E/E| > 5 QE, with QE the
tolerance, is restarted from the previous time with reduced values of the basic integration
parameters ηI and ηR. If instead the energy error lies in the interval [QE, 5 QE], the
accuracy parameters are reduced by an appropriate amount. Likewise, an increase (up
to the initial values) is carried out for relative errors below QE/5 (see routine check.f).
Note the use of two options (with common saves on fort.1 and fort.2) in order to employ
the energy check independently of terminations at arbitrary times. Consequently, in the
case of a halted calculation, the previous good common save must be copied from fort.2

to fort.1 before the restart (possibly with modified accuracy parameters).

4 Input parameters

A standard input file consists essentially of six lines defining the membership, accuracy
and decision-making parameters, options, KS integration, IMF power-law data and virial
theorem scaling. Some of these quantities are given in Table 2 and routine define.f

contains a complete listing. Many are dimensionless while others have an astrophysical
meaning (see Aarseth 2001a for the neighbour scheme in NBODY 2). Likewise, the options
KZ(J) can be selected by consulting Table 3 or routine define.f. Hence only a few values
need to be changed in the input template once a calculation has finished. Input files for
primordial binaries (inbins) and 3D tidal field (inlog) are included in the directory Docs.
Uploaded binaries with option 22 can be regularized initially by specifying NBIN0.

For most purposes, and a wide range of particle numbers, the original choice of the
accuracy parameters ηI, ηR and ηU may suffice. Having decided on the membership N ,
a maximum neighbour number of nmax ≃ 2N1/2 is usually adequate in the absence of
primordial binaries. One good strategy for choosing the output intervals is to adopt
∆tadj = 2.0 for energy checks and escaper removal and take ∆tout = 10.0 for main output
and data analysis. The choice of the relative energy tolerance QE is a matter of taste.
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5 Initial conditions

Different choices of initial conditions are available. These include the Plummer model,
two orbiting clusters or a massive bound/unbound binary (KZ(5) = 1, 2, 4). Several
types of IMF (Salpeter or Kroupa, Tout & Gilmore 1993) may be generated by option
# 20. However, it is envisaged that the user will provide original initial conditions for
new investigations (mi, ri,vi, i = 1, 2, .., N). One possibility is to use the stand-alone
code aking6.f and input inking for generating King models [Heggie & Ramamani 1995]
included in the directory Docs. Also see mcluster.c. A package for producing initially
rotating models is also available [Spurzem & Einsel 2002, private communication].

The specially generated initial condition is read from fort.10 with option # 22 = 2
before scaling to standard internal units of total energy −0.25 (for bound clusters) and
∑

mi = 1. Primordial binaries and single stars can be uploaded using # 22 = 4 instead.
Unless special precaution is taken, the same scaling is applied generally. Thus in scaled
units and overall virial equilibrium the mean square velocity is < v2 >= 1/2 and the
crossing time (denoted TCR) is tcr = 2

√
2, independent of N .

With the initial length unit RBAR specified in pc and the mean mass ZMBAR (which is
not preserved with option # 20 >= 0) in M⊙, any internal quantity may be converted
to astrophysical values. A convenient set of conversion factors is given by RBAR, SMU,

VSTAR, TSTAR for distances (pc), masses (M⊙), velocities (km sec−1) and times (in Myr).
Binary periods in years or days can be obtained from the N -body units using YRS or
DAYS in the standard Keplerian expression without 2π. Moreover, length scales may also
readily be converted to solar radii (SU) or astronomical units (AU).

6 Decision-making

Although individual time-steps are used in the general integration, the Hermite scheme
employs discrete block-steps which enables many particles to be advanced in tandem.
Consequently the main integration cycle comprises a small number of calls to the next
level of routines, with a few other important tasks performed either before or at the
end. This structure facilitates the investigation of any strange behaviour such as infinite
looping since the offending routine can be identified, whereupon the principle of bisecting
can often be applied to locate the problem.

Essentially the integration cycle consists of the following procedures:

• Determine the next block of particles due for advancement

• Update any close encounter solutions (KS and/or chain)

• Predict coordinates and velocities (neighbours or full N)

• Advance the solution for each body (neighbour force or total force)

• Deal with any close encounter terminations (KS, chain or mergers)

• Check stellar evolution (updating of radii or mass loss)

4



The strategy for the first step relies on the simple device of determining the smallest
value of t+∆ti for the members in the block, denoted by tnew, where t is the current time.
The corresponding time-steps are obtained by a relative force criterion of the form

∆ti =





η|Fi|
¨|Fi|





1/2

, (1)

where η is a small dimensionless constant ensuring convergence. To fit in with the more
efficient block-step scheme, the ‘natural’ step is truncated (or quantized) to the nearest
factor 2 value commensurate with TIME. This requirement implies that mod(TIME,∆ti) = 0
for both the old and new time-step at the updating of a Hermite solution. A more sensitive
expression is obtained by including the other force derivatives (see book Eq. 2.13). Given
a list of particles that are due for treatment in some larger interval, the actual block-step
members are determined by identifying those with T0 + ∆tj = tmin, where tmin is the
smallest value of tnew = T0 + ∆tj in the previous block.

The basic integration cycle is given by the following lines of code:

* Advance the pointer (<= NXTLEN) and select next particle index.

50 LI = LI + 1

IF (LI.GT.NXTLEN) GO TO 1

I = NXTLST(LI)

TIME = T0(I) + STEP(I)

*

* See whether the regular force needs to be updated (IR > 0).

IF (T0R(I) + STEPR(I).LE.TIME) THEN

IR = 1

ELSE

IR = 0

END IF

*

* Advance the irregular step.

CALL NBINT(I,IKS,IR,XI,XIDOT)

*

* See whether the regular step is due.

IF (IR.GT.0) THEN

CALL REGINT(I,XI,XIDOT)

END IF

*

* Determine next block time (note STEP may shrink in REGINT).

TMIN = MIN(TNEW(I),TMIN)

As discussed in subsequent sections, the special case of KS and chain regularization
merits special treatment. Following the relevant predictions, new solutions of the irregular
and (if required) regular force polynomials are obtained for each particle in turn, together
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with coordinate and velocity corrections. After all the members on the current block
have been advanced, procedures relating to any terminations are carried out. This may
necessitate an occasional return to the main routine for the specified task, defined by the
flow control indicator (cf. Table 5). The last step of the main cycle deals with the optional
stellar evolution, examined at small quantized intervals ≤ 102 yr.

7 Data management

It is the purpose of a code to produce results. However, there is a wide choice of quantities
that can be constructed from the basic particle data. Here a dual-purpose strategy has
been adopted and if this is not convenient, special data analysis can readily be included
either during integration or at output times (i.e. called from routine adjust.f).

The data structure itself forms the backbone of the code and will be summarized first
(also see book p.117). Given a number of KS solutions Np, the particle arrays for the
components of each pair Ip are placed in locations 2Ip−1 and 2Ip, with the corresponding
centre of mass (c.m.) in N + Ip. Hence all KS pairs appear contiguously in the order
in which they are initialized. This scheme facilitates a sequential treatment of all the
particles, with force summations and neighbour lists referring to increasing locations in
the range [2Np + 1, N + Np]. It entails relabelling particle references in neighbour or
perturber lists after each new or terminated KS pair but is a small cost for preserving
simplicity. The structure of a given list for particle i is of the form LIST(k,i), where
k = 1 is used for the neighbour number. The neighbour strategy in NBODY 2 is similar
[Aarseth 2001a]. In the case of force summations involving neighbours with j > N , the
c.m. is replaced by the components (which must be obtained by a KS transformation) if
the c.m. approximation is not satisfied. Typically d < 100a(1 + e) for equal masses.

In order to introduce more complex systems, such as stable triples or temporary chain
subsystems, the device of ‘ghost’ particles of zero mass is used (see below). This facilitates
recovery of the original state without affecting the overall data structure. Pointers to the
individual members are saved and any relevant information may be obtained as required,
although the identification of multiple hierarchies is non-trivial (see Appendix C of book).

Two types of output are produced. Important results are presented in file names using
capitals, while supplementary diagnostics appear in fort.n with n > 2. Also note the
text file fort.x available on the website and in dir Docs. The main files provide the
following information in mathematical notation:

• ESC t (Myr), m (M⊙), v2/ < v2 >, v (km s−1), k∗, Ni for each escaper

• OUT9 Eb, e, Ecm, r, mk, ml, P (days), Nk, Nl, k∗

k, k∗

l for each KS binary

• HIARCH t, a0, a1, e1, a1(1 − e1), P1/P0, mbin/m3, Rpcrit, mbin, m1/m2, N1,2,3

• HIDAT Nk, Nl, Nm, k∗, m1, m2, m3, r, emax, e0, e1, P0, P1 for hierarchies

• OUT3 m, x, y, z, ẋ, ẏ, ż, Ni for i = [1, N + Np] (binary format)
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Here Ni represent original particle names, Ecm is the specific c.m. binding energy, P
denotes the period (days), k∗ is the stellar type, a1(1 − e1) is the outer pericentre and
Rpcrit the corresponding stability boundary. The maximum eccentricity in a Kozai cycle
is given by emax, while e0 and e1 refer to the respective eccentricities. Note that the file
HIARCH contains information on the formation and termination of hierarchical systems
whereas HIDAT provides a summary at each main output. All the above are optional (cf.
the multi-valued # 8) and the file OUT3 is the data bank which may be produced at main
output with specified frequency. Because the binary format is currently saved in single
precision, subsequent reading and analysis of this data must be consistent. Note the use
of two records for each output which enables arrays of variable length to be read.

A variety of results also appear as standard output. This takes the form of an error
check at intervals ∆tadj, (with DE = ∆E/E) when the density centre is updated and esca-
pers removed. The accumulated energy error, DETOT, gives the systematic drift in total
energy. Considerably more information is given at intervals ∆tout which are best kept
commensurate with ∆tadj. In this connection, note the facility (# 32) to increase the
output intervals if the energy binding the cluster changes by factors of 2.

We summarize some of the most important quantities given at main output. This
information is organized in distinct (optional) groups. The first line gives the particle
number, average neighbour number (< NNB >), KS solutions (KS), number of mergers
(NM and MM, standard and higher order) and single stars (NS). Among useful quantities
describing the cluster evolution are the half-mass radius (< R >), tidal radius (RTIDE),
core radius (RC) and membership (NC), energy in binaries and mergers (EB/E and EM/E)
and the time in Myr (T6). Escapers are removed outside 2*RTIDE with option # 23.

If # 8 is active, there is a summary of original and exchanged binaries, the average
and maximum eccentricity (< E > and EMAX), as well as distributions of stellar population
types and binary binding energies. The energy budget is also summarized. For historical
reasons, the energy binding the cluster is saved in E(3), while E(1) and E(2) give the
energy of primordial and dynamically formed binaries. For the definition of the total
energy see Eq. (9.29) of the book. A large number of counters are displayed; see Table 4
for a list of the most important. In large calculations, some time-step counters may exceed
the integer limit and are reset to zero above 2 × 109 (cf. NIRECT, NURECT, NRRECT).

Finally, note the optional time offset provision (#35) which prevents large values of
TIME/STEP. Thus if the limit DTOFF is exceeded, TIME is reset to zero and TOFF is used to
obtain the total time TTOT. This is only of practical relevance when printing the current
value of the time as TIME + TOFF.

The question of adding extra variables to the common blocks often arises. Here we
mention two useful strategies. The simplest case is to introduce a new labelled common

in the header file common6.h so that these variables become available in most routines.
At the same time, the size of the common save must be increased accordingly (cf. routine
mydump.f) and the whole code recompiled. A slight drawback is that old common saves
cannot be read in the usual way. The alternative is to create dummy variables in an
existing labelled common which can be used for newly created variables without affecting
the overall size. However, the latter method needs to anticipate future demands.
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8 Two-body regularization

The KS method first appeared in a standard N -body code at the Cambridge IAU Collo-
quium # 10 in 1970 [Aarseth 1972]. It was an instant success and has proved a mainstay
for treating binaries and close two-body encounters ever since. Like any versatile al-
gorithm, it has progressed through several distinct versions until ending up with the
highly accurate Stumpff formulation [Mikkola & Aarseth 1998]; or alternatively the KS
block-step scheme [Nitadori 2012]. Although the underlying mathematics is very precise,
implementations are something of a black art, with a variety of heuristic procedures. This
is particularly the case when dealing with interactions in compact subsystems.

An arbitrary number of KS solutions are treated at the same time. Decision-making
is essentially controlled by two input parameters which are modified at each output if
option # 16 is active. A search for close encounter candidates is carried out if the time-
step becomes suitably small; i.e. ∆ti < ∆tcl, subject to the distance test R < Rcl in
order to ensure dominant two-body motion (see book for definitions). If necessary, the
actual regularization is delayed until both the components are advanced to the same time.
Note that the relative time-step criterion gives very similar values for different masses
during close encounters. Implementations of the KS transformations and polynomial
initialization have been described in considerable detail elsewhere [Aarseth 1985, 2001b,
2003]. It is therefore sufficient to discuss some aspects of the decision-making.2

As noted in a previous section, all relevant KS solutions are considered at the start
of the integration cycle and not advanced beyond the end of the block-step. For this
purpose, the regularized time-step is converted to physical units (book Eq. (11.1)). In
practice most primordial binaries are unperturbed, with time intervals often exceeding
the typical block-step, and an efficient sorting and insert procedure is employed (see book
p.143). The exceptional case of a physical collision is treated differently and requires a
new block-step to be created (for a discussion of time quantization see book Eq. (12.16)).
An algorithm for specifying intervals of unperturbed motion is also given in the book.

Termination is essentially controlled by the relative perturbation, except that soft
binaries and hyperbolic flybys are also subject to a distance test in terms of the initial
separation. The strategy for terminating a strongly perturbed hard binary depends on the
suitability of a switch to chain regularization. The ideal case is that the latter treatment
may be adopted but there are many situations when such configurations are not sufficiently
compact (see below). Hence we may instead have repeated switching of particle pairs
according to dominant two-body solutions, which is less satisfactory.

Following a KS termination, new polynomials and time-steps are assigned to the com-
ponents. All relevant neighbour and perturber lists must also be updated in order to be
consistent with the new particle sequence. However, the latter task deals with integer
arithmetic and is quite fast. Since the c.m. time-step is inevitably small for strong pertur-
bations, the new steps may be comparable and hence do not result in smaller block-steps.
In any case, small values may increase rapidly if the situation permits (i.e. doubling every
other step). Finally, we emphasize that the use of regularization places a lower limit on
the Hermite time-steps, thereby saving significant computational efforts.

2The data structure is described in Section 7.
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9 Hierarchical systems

The presence of binaries often lead to the formation of long-lived hierarchies. The com-
putational requirements for direct integration of the inner binary may be quite severe;
yet the semi-major axis hardly changes even for modest distance ratios. Since this is the
most important binary element, it would seem justified to adopt the c.m. approximation
and introduce the KS solution for the outer component, thereby increasing the period
and replacing one direct integration. This procedure neglects short-term fluctuations and
assumes no secular change, in qualitative agreement with first-order perturbation theory.

Although simple stability criteria were already introduced in the mid 1980s, the chaos
approach provided some theoretical justification and led to a semi-analytical criterion
[Mardling & Aarseth 1999]. More recently, a general three-body stability criterion has
been developed from first principles [Mardling 2008]. It is valid for different masses and
inclinations and was found to be more reliable than older criteria. The code also includes
an optional averaging method to model the eccentricity oscillations (Kozai cycles) induced
by high inclinations. However, a new stability criterion [Valtonen 2014] has now been
extensively tested and appears more robust, particularly for large mass ratios. This
algorithm has now been adopted throughout.

The identification of suitable configurations is carried out for small c.m. time-steps
and the first part of the procedure employs the same algorithm as for chain regularization
(see below). Subsequently, the division of labour is essentially made by comparing the
outer pericentre, Rp = a1(1 − e1), with the inner semi-major axis, a0. Roughly speaking,
the case Rp > 3a0 justifies a search for stable systems. Further conditions, such as the
requirement of the outer binary being hard and not too strongly perturbed must also be
satisfied in addition to the stability test.

A new hierarchy is initialized in a similar way as for standard KS. However, when
examining the data structure we distinguish between the outer component being a single
particle or binary. In the case of a triple, the outer body is defined as a ghost particle
after combining it with the inner c.m. into a new wider KS pair. However, with a second
binary, both the KS solution and associated c.m. are made inactive by prescribing large
values of T0 and setting the relevant masses to zero. Here the latter plays the role of the
ghost particle for triples and once the c.m. location j > N has been identified from the
ghost name, the pair index is simply given by Ip = j − N . For stability purposes, triples
may be considered as degenerate quadruples and a small correction term is included for
the smallest binary. Although rare, higher-order systems also occur and are treated in an
analogous manner (their data structure is discussed in a book appendix).

Further stability checks are made at each apocentre passage because the outer or-
bit may have changed due to perturbations. Mass loss from the inner binary reduces
the spacing ratio and necessitates a stability test which is performed in situ. Following
termination of a triple, the inner binary is initialized as a KS solution while the outer
component already has the standard form (but is not in the correct location). In the
case of a quadruple, the second KS pair and ghost c.m. are initialized in situ in the usual
way after the neighbour list is formed. The force discontinuity arising from the changed
configurations is handled in several ways with appropriate differential corrections to the
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energy budget. Note that the initialization and reconstruction of hierarchies employ the
small labelled common block BINARY which contains original masses and particle names
(as well as the basic KS variables for any second pair).

10 Chain regularization

Several methods are available for treating strong interactions involving more than two
particles. The original AZ three-body regularization was implemented first, followed by
Heggie’s global method for four particles [cf. Aarseth 1985]. For simplicity, these formula-
tions do not include external perturbations. The versatile chain regularization [Mikkola &
Aarseth 1990, 1993, 1996] which includes perturbations has proved more effective. Because
of the increased complexity, the relevant routines are placed in the separate directories
Chain and Nchain. Since only one configuration at a time is considered at present, the
two unperturbed treatments are still maintained but rarely needed.

Over the last few years, special efforts have gone into implementation of algorithmic
regularization [Mikkola & Merritt 2009]. There are two new directories, ARchain & ARint

which are analogous to standard chain regularization. However, a full post-Newtonian
treatment is also included [Aarseth 2012], together with tidal disruption. The different
outcomes involve rather complicated decision-making. Thus there are two channels for
stellar disruption: either via a KS regularization or inside a chain (ARC only). Addition-
ally, a new procedure for initiating chain or ARC regularization for strongly perturbed
KS binaries has been introduced which brings further complications.

Close multiple encounters are characterized by one or more small c.m. time-steps.
It is therefore convenient to perform the main decision-making for initiating multiple
regularization at apocentre (defined as the turning point of radial velocity when R > a).
In the case of a single particle approaching a hard binary, the condition for acceptance
depends on the separation as well as the impact parameter. Thus too long delay leads to
KS termination by large perturbation, while wide separations may be inefficient (unless
for ultra-compact configurations). Algorithms for initialization and integration of chain
subsystems are described in the book, together with specific procedures for changing
the membership (reduction or increase). Such interactions tend to be short lived. Note
the importance of including various stability tests (see above) since the ejection of a
particle may otherwise produce a long-lived hierarchical system which can be studied
more efficiently in another way.

Termination usually occurs when the third body escapes or two surviving binaries
become well separated and are more suitable for KS treatment. The initialization of one
or two KS solutions is carried out at termination rather than in the usual way during
integration. A more difficult situation arises when the most distant particle is still bound
to the subsystem. It then becomes a question of whether to retain such a member as
part of the chain or include its effect as a strong perturber. In this connection, note
that the system size is used for perturber selection and also that the perturbers are
predicted at every function evaluation (i.e. many times per step) by the Bulirsch–Stoer
[1966] integrator. Both the close encounter separation and the characteristic gravitational
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radius (defined by the mass products and total energy) are used to limit the system size.
The data structure of the basic chain algorithm employs quantities expressed in the

local c.m. frame. Transformations to global values must therefore be made before in-
cluding the effect of perturbers, and likewise at termination. Since the device of ghost
particles is adopted to preserve the sequential arrangement, the actual masses are saved
together with the corresponding names. It is then a simple matter to recover the relevant
global locations of ghosts for initialization. In the case of three initial members, the bi-
nary components are placed in the first two single particle locations, as for standard KS
termination, while the third body is turned into a ghost particle in situ. The termination
of two binaries, on the other hand, yields the initial members in the first four locations.
However, this arrangement cannot be assumed to persist since a new KS may be formed
during the intervening interval and in any case, a four-body system may be reduced by
escape. Another point worth noting is that the particle assigned as the c.m. may in fact
escape, in which case a new reference body is determined. We also mention that the
current scheme now caters for up to six members, although more than four is quite rare.

The treatment of the chain c.m. requires special care. Thus the force and its first
derivative are first obtained in the usual way, whereupon differential corrections are added.
This entails subtracting the standard c.m. contributions from any perturbers and adding
the respective individual mass-weighted terms. For consistency, similar corrections are
carried out when dealing with the perturbers. Again the overheads of checking the neigh-
bour lists for identification is modest compared with the actual function evaluations.
Moreover, note that the accumulated duration of all the chain regularizations only repre-
sents a small fraction of the total time.

Some comments on the time management may be helpful. The choice of intervals for
the internal integration is based on the principle of convergence for coordinate prediction.
Essentially the maximum interval for advancing the solutions is determined by examining
T0 + ∆tj for the relevant perturbers as well as the c.m. itself. Typically, the Bulirsch–
Stoer time-steps are somewhat smaller than this interval. An inversion from physical
to regularized time usually ensures that the maximum is barely exceeded (see book for
the algorithm). Additional features, such as slow-down and quantization of time are also
discussed extensively in the book.

11 Stellar evolution

For greater realism, the code includes several options for mass loss and finite-size effects.
The treatment of stellar evolution is based on fast look-up functions which provide infor-
mation on the stellar type, radius as well as core mass for a given initial mass, age and
metallicity [Tout et al. 1997, Hurley et al. 2000, Hurley 2008]. The current position in
the HR diagram is checked at frequent intervals determined by the evolution rate and
the remaining time of each characteristic stage. A list of stellar evolution indicators k∗

is included in routine define.f and two look-up times (i.e. previous and next value) are
used for decision-making. Reimers-type wind loss is adopted in addition to supernova
events, where the latter result in neutron star or even black hole formation. A more
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comprehensive treatment of wind mass loss has also been included in the 2015 version,
together with a revised scheme for velocity kicks and final masses of NSs/BHs.

For convenience, mass loss corrections are implemented when significant. This entails
modifying the force and first derivative of each neighbour, as well as subtracting the
potential energy change assuming instantaneous mass loss from the cluster. In the case of
KS solutions, the orbit is expanded at constant eccentricity together with force updating
of the c.m. neighbours. Neutron stars are currently assigned a kick velocity sampled from
a Maxwellian with relatively large dispersion [cf. Hansen & Phinney 1997] which usually
leads to disruption of close binaries and escape of single stars. However, there is now
(Nov 2015) a choice of modest kick velocities. An optional procedure (# 37) is included
in order to avoid a sudden close approach by high-velocity particles.

The code contains a realistic recipe for physical collisions, implemented for KS so-
lutions and all multiple regularizations. This scheme has been used successfully in the
private NBODY 4. Depending on stellar type of the components, complete mixing or com-
mon envelope evolution is adopted together with mass loss. In the case of a KS pair, the
new c.m. body is initialized as a single particle and the second component turned into a
massless escaper. With chain regularization, an iterative procedure is used to determine
the exact pericentre if the closest two-body separation lies inside a suitably small value.
The energy of the collision pair is evaluated indirectly using well defined variables rather
than directly from the coordinates and velocities. With more than three chain members,
the membership is reduced and the calculation continued, otherwise standard termination
follows.

Finally, we mention optional tidal circularization (# 27). If # 27 = 1, a sequential
procedure is employed [Portegies Zwart et al. 1997]. In this case, discrete changes of
the orbital elements a, e are made. Relevant modifications of the KS variables are car-
ried out if a(1 − e) < 4r∗1, with r∗1 the largest radius (see book for detailed algorithm).
Alternatively, continuous circularization is adopted if # 27 = 2 [Mardling & Aarseth
2001]. Several adjustments are usually made because the stellar radii tend to increase
with time. Note that for very large eccentricities, angular momentum conservation gives
rise to considerable shrinkage. One way to reach large eccentricity is for the inner binary
to experience favourable Kozai oscillations.

12 External fields

The code includes two types of external tidal field which will be described (for details
see chapter 8 of book). Linearized equations are appropriate for nearly circular orbits
with small vertical displacements and are therefore suitable for simulating open clusters.
Two optional variants are available: (i) # 14 = 1 for the standard case based on Oort’s
constants, and (ii) # 14 = 2 which applies to a galactic point mass (also linearized).

The relevant tidal terms (converted from the length unit RBAR and total mass) are
initialized in routine xtrnl0.f and the perturbations are added in xtrnlf.f and also in
xtrnlp.f for KS. The additional terms in the equations of motion are simple and enables
explicit force derivatives to be employed for the Hermite integration. The corresponding
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contributions to the total energy are included (cf. ETIDE in xtrnlv.f), thereby facilitating
conservation checks. However, the linearized form of the equations of motion are not
appropriate well outside the tidal radius. Hence a more detailed exploration of ejected
stars should be restricted to modest distances.

In order to broaden the scope for studying more general cluster motion, a full 3D
galactic model has been implemented (# 14 = 3). Note that the external effect is only
included in xtrnlf.f for the direct integration, consistent with treating binaries in the
c.m. approximation here. We adopt a composite galaxy model consisting of four com-
ponents: (i) central point mass, (ii) bulge (gamma/eta model), (iii) Miyamoto–Nagai
(1975) disk and (iv) logarithmic potential. This model gives a good representation of the
Galaxy and satisfies the requirement of being computationally convenient for the Hermite
scheme. In order to provide more flexibility, any combination of the components may be
used by varying some of the input parameters (cf. routine xtrnl0.f and the special input
template in directory Docs). Note that eccentric orbits in the galactic plane can also be
studied in this model.

The tidal effect on cluster members is obtained by including the differential force of
the Galaxy with respect to the cluster centre. This necessitates integrating the cluster
guiding centre as a point mass orbiting the Galaxy (routines gcinit.f and gcint.f),
using the total force functions. Consequently, the cluster motion is known to high accuracy
throughout the calculation. As before, distant stars may be considered as escapers and
are removed if # 23 > 0. Unless specified initially, a value RTIDE = 10 is adopted for
the tidal radius. Alternatively, the ejected members may be added to a test population
forming the tidal tail and integrated by a fast method (see below).

The equations of motion for the full galactic potential do not admit an energy integral
as in the linearized case. This raises the question of an alternative way of accounting
for the tidal energy change. From general principles, this contribution is provided by the
integral of ẇ = v · P, where P is the tidal force. Likewise, the terms for ẅ are available
using the galactic force derivative. This enables a Taylor series solution to be obtained
at the end of each regular step. The third-order terms are incomplete and their inclusion
give worse results, so are omitted. The individual mass-weighted terms are accumulated
(cf. ETIDE in regint.f) and included in the expression for the total energy. Note that
small output intervals (i.e. ∆tadj < 1) may introduce apparent spurious energy errors
here. So far, experience with this scheme has been favourable.

It may also be of interest to study a star cluster embedded in gas, with the possibility of
including time-dependent decay. A Plummer sphere coinciding with the centre of mass has
been adopted as an optional feature (# 14 = 3 or 4) which can be employed independently.
Three extra input parameters are required (cf. routine xtrnl0.f and define.f), namely
the total mass and length scale (saved as square) as well as the decay time for gas expulsion
[Kroupa et al. 2001], all in N -body units. Note that energy conservation does not apply
if the Plummer mass decays (hint: set large energy tolerance QE).

The equations of motion are modified analogous to the case of linear external pertur-
bation by including the force components in the regular polynomial. Likewise, the relative
perturbations for KS solutions (force and its derivative) are evaluated in simplified form
assuming the same softened central distance. The escape criterion is modified to include
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the background potential and likewise the total energy correction. Another aspect need-
ing attention is mass loss due to evolving stars (routines ficorr.f and fcorr.f). Again
the correction procedure is similar to the standard case (# 14 = 1).

Since the standard definitions of crossing time and virial ratio are not suitable in this
formulation, alternative expressions are used. The former is now given by 2Rh/V , with
Rh the half-mass radius and V the rms velocity. A consistent expression for the latter
can be derived from first principles (based on summing mr ·F) which leads to combining
the potential and virial energies in the denominator. Finally, total energy conservation is
achieved by adding the sum of tidal energy contributions at output time.

13 Tidal tails

Procedures for studying the growth of tidal tails by fast integration have been added to the
code. This facility can be particularly useful for cluster orbits in a 3D galactic potential
since the linearized tidal energy corrections tend to become less accurate at large distances.
Consequently, a substantial speed-up may be achieved for large systems. The basic idea
of the scheme is to employ the standard variables, with the tidal tail particles saved in
unused parts of the arrays (which necessitates making a suitable declaration of maximum
array size). In fact, the standard size of the common blocks remains unchanged, with four
counters or pointers replacing part of a redundant integer array. There are only four new
routines of modest size and another five are modified slightly.

Each tidal tail member is initialized for integration at the time of escaper removal, i.e.
outside a distance 2*RTIDE where RTIDE is specified (in N -body units) at input if non-zero.
Data for the first member is saved in location ITAIL0 = NZERO + min(KMAX,NBIN0+10),
with NBIN0 the initial number of primordial binaries. This is safely above the largest
value used for direct integration. Routine tail0.f increases the membership and copies
the current coordinates and velocities to appropriate locations, expressed with respect to
the Galactic Centre. New time-steps are then assigned after obtaining the galactic force
and first derivative, whereupon the integration variables are initialized in the usual way.
The membership is denoted by NTAIL and any loop over the whole population is made
from I = ITAIL0 to NTTOT = ITAIL0 + NTAIL - 1. Thus all stars in the tidal tail would
require array sizes (i.e. NMAX) of at most 2*NZERO + KMAX, depending on the number of
primordial binaries.

Since the integration is done in the Galactic frame, the corresponding force and first
derivative are obtained by the usual expressions without differential correction (routine
xtrnlt.f). This approach assumes a full galactic model (i.e. # 14 = 3) but a linearized
tidal field can readily be included if local coordinates are used instead. The integration
itself is performed by routine ntint.f, called from intgrt.f at the end of each block-step
for any member satisfying the usual condition T0 + ∆t ≤ t. The algoritm is a simplified
version of nbint.f, with standard prediction added. Note that the time-steps are usually
of the maximum size specified by the input parameter SMAX, and quantized values are
used for a uniform treatment. This ensures that the data is available with the highest
accuracy at main output times.

14



Some simple additions to other routines facilitate the decision-making. Although no
new options are required, the tidal tail integration is initiated with option # 23 ≥ 3 and
# 14 = 3. Any relevant treatment is therefore executed for an existing population, i.e.
NTAIL > 0. Finally, option # 3 is used to control the output of results for data analysis
and plotting. A value of 1 gives rise to the standard output file OUT3 in binary format.
Various multiple choices are available, with # 3 = 4 producing a formatted file OUT34

in astrophysical units (pc and km s−1) which contain all the stars with respect to the
density centre (ASCI format), while # 3 = 5 also yields OUT3. A small header contains
both memberships and the time in Myr.

14 Numerical problems

A code is never fully tested and the range of initial conditions may be much wider than
has been considered so far. The question of validity is not an easy one, and there are also
accuracy issues in spite of careful treatment.

Consider the simple case of an intermediate-mass cluster (say N ≃ 500) with realistic
mass spectrum and the recommended maximum neighbour number, 2N1/2. Thus a mas-
sive wide KS binary may introduce significant errors because a perturber list containing
all the neighbours would be too small; i.e. a(1 + e)/γ

1/3
min > Rs (with Rs the neighbour

radius) and yet the binding energy may be large. This situation improves with increasing
N since we have Rcl ∝ 1/N while the interparticle separation scales as 1/N1/3.

Another difficult condition arises for borderline cases of hierarchies which may be
long-lived but not accepted as stable. If it occurs, frequent switching of solutions also
leads to inefficiency as well as loss of accuracy. It goes without saying that one cannot
anticipate future problems since so much depends on the type of investigation. However,
in general, the numerical task gets harder during advanced stages of evolution when the
central density is smaller and more complex hierarchical configurations are formed. In
order to investigate a given problem, it is useful to halt the calculation before including
some diagnostics. This can be achieved by typing ‘touch STOP’ at any time, whereupon
a common save may occur on fort.1 (if # 1 > 0), from which a restart can be made.

Although the external energy binding the cluster may be feeble, superhard binaries
tend to have strong interactions enhanced by their gravitational focusing. Even if not
present initially, such binaries may shrink via tidal circularization or common envelope
interactions. In any case, some shrinkage by dynamical means is possible before ejection
by recoil intervenes. Thus a small change in the total energy would give rise to a dispro-
portionately large relative error because the external energy appears in the denominator.
If larger, the relative error is therefore replaced by 100 times the actual change (only GPU
version).

Finally, a word of warning concerning output time intervals. Thus it is highly desirable
to employ quantized values like 0.125 or 1.0 instead of intervals not commensurate with
1. In fact, the latter could lead to code crash.
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16 Appendix

In this Appendix we provide some tables of useful information. Table 1 defines the
parameters used in the general common block, together with representative values for a
test calculation with 1000 single particles and 1000 primordial binaries. Note the provision
of extra KS solutions in case of additional close encounters in the early stages.

Table 1: FORTRAN parameters.

Nmax NMAX Total particle number and c.m. bodies 4010
Kmax KMAX KS solutions 1010
Lmax LMAX Neighbour limit 100
Mmax MMAX Hierarchical binaries 10
Mdis MLD Recently disrupted KS components 22
Mreg MLR Recently regularized KS components 22

Mhigh MLV High-velocity particles 10
Mcloud MCL Interstellar clouds 10
Nchain NCMAX Chain membership 10

Table 2 contains an example of standard input parameters and typical values for an
N = 1000 test run (a larger value of NNBMAX may be used for primordial binaries). Both
the book and FORTRAN notations are given for convenience.

Table 2: Integration parameters.

ηI ETAI Time-step parameter for irregular force 0.02
ηR ETAR Time-step parameter for regular force 0.02
S0 RS0 Initial radius of the neighbour sphere 0.3

nmax NNBMAX Maximum neighbour number 70.0
∆tadj DTADJ Time interval for energy check 2.0
∆tout DELTAT Time interval for main output 10.0

QE QE Tolerance for energy check 1.0 ×10−5

RV RBAR Virial cluster radius in pc 2.0
MS ZMBAR Mean stellar mass in solar units (#20=0) 0.8
Qvir Q Virial theorem ratio (T/|U − 2W |) 0.5
∆tcl DTMIN Time-step criterion for close encounters 4.0 ×10−5

Rcl RMIN Distance criterion for KS regularization 0.001
ηU ETAU Regularized time-step parameter 0.2

hhard ECLOSE Energy per unit mass for hard binary 1.0
γmin GMIN Limit for unperturbed KS motion 1.0 ×10−6

γmax GMAX Termination criterion for soft binaries 0.001
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The main options are listed below. For a complete list see routine define.f. To find
where option # J is used, type ‘grep KZ(J) *.f’ in the N -body directories (or just ’KZ’
in the directory Chain or ARchain).

Table 3: Optional features.

1 Common save on unit 1 by touch STOP or TIME > TCRIT
2 Common save on unit 2 at output time or restart
3 Data bank on unit 3 with specified frequency
5 Standard initial conditions (=0: uniform; =1: Plummer)
6 Output of significant & KS binaries (=1, 2, 3 & 4)
7 Output of Lagrangian radii (several types)
8 Primordial binaries (extra input required)
9 Binary output

10 Regularization diagnostics (=2: NEW KS & END KS)
12 HR diagnostics of evolving stars (interval DTPLOT)
13 Interstellar clouds (extra input required)
14 External tidal force; open or globular clusters
15 Multiple regularization or hierarchical systems
16 Updating of regularization parameters Rcl, ∆tcl
17 Modification of ηI and ηR by tolerance QE

18 Primordial triples (extra input required)
19 Synthetic stellar evolution with mass loss (>=3)
20 Different types of initial mass functions (=0: standard)
21 Extra output line (MODEL #, CPU, DMIN, AMIN, RMAX)

22 Initial conditions mi, ri, ṙi on unit #10 (=2, 3, -1)
23 Removal of distant escapers (isolated or tidal)
26 Slow-down of KS and/or chain regularization (=1, 2, 3)
27 Tidal circularization (=1: sequential; =2: chaos; =3: GR capture)
28 GR radiation for NS & BH binaries (with #19 = 3; choice of #27)
30 Chain regularization (> 1: special diagnostics)
31 Cluster centre of mass correction
32 Increase of output interval (limited by tcr)
33 Distribution of block-steps at output (=1 or 2)
34 Roche-lobe overflow (=1: synhronization)
35 Integration time offset (standard = 100 time units)
38 Force polynomial corrections (=0: I > N; not rec.)
40 Neighbour number control (>= 2: fine-tuning to NNBMAX/5)
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Table 4 defines significant counters, together with an actual example from run with
1800 single particles and 200 primordial binaries.

Table 4: Characteristic counters.
Name Definition Counts

NSTEPI Irregular time-steps 8.0 × 107

NSTEPR Regular time-steps 2.1 × 107

NBLOCK Block steps 5.1 × 106

NKSTRY Regularization attempts 2.4 × 106

NKSREG KS regularizations 2.2 × 103

NKSHY P Hyperbolic regularizations 800
NKSMOD KS slow-down modifications 6.6 × 104

NKSPER Unperturbed two-body orbits 4.6 × 1011

NMERGE Hierarchical mergers 359
NEWHI Independent new hierarchies 25
NCHAIN Chain regularizations 86
NSTEPU Regularized time-steps 4.2 × 107

NSTEPC Chain integration steps 1.1 × 105

NMDOT Stellar evolution look-ups 5.0 × 104

NSN Supernova events 5
NWD White dwarfs 90
NCOLL Stellar collisions 4
NBS Blue stragglers 2
NSY NC Circularized binaries 9
NSESC Single escapers 1833
NBESC Binary escapers 176
NMESC Hierarchical escapers 2

Table 5 lists the control indicators used for decision-making.

Table 5: Indicator for flow control.

0 Standard value
1 New KS regularization
2 KS termination
3 Output and energy check
4 Three-body regularization
5 Four-body regularization
6 New hierarchical system
7 Termination of hierarchy
8 Chain regularization
9 Physical collision

−1 Exceptional cases
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