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ABSTRACT
We describe the use of Graphics Processing Units (GPUs) for speeding up the codeNBODY 6

which is widely used for directN -body simulations. Over the years, theN
2 nature of the

direct force calculation has proved a barrier for extendingthe particle number. Following an
early introduction of force polynomials and individual time-steps, the calculation cost was
first reduced by the introduction of a neighbour scheme. After a decade of GRAPE computers
which speeded up the force calculation further, we are now inthe era of GPUs where relatively
small hardware systems are highly cost-effective. A significant gain in efficiency is achieved
by employing the GPU to obtain the so-called regular force which typically involves some 99
percent of the particles, while the remaining local forces are evaluated on the host. However,
the latter operation is performed up to 20 times more frequently and may still account for a
significant cost. This effort is reduced by parallel SSE/AVXprocedures where each interaction
term is calculated using mainly single precision. We also discuss further strategies connected
with coordinate and velocity prediction required by the integration scheme. This leaves hard
binaries and multiple close encounters which are treated byseveral regularization methods.
The presentNBODY 6–GPU code is well balanced for simulations in the particle range10

4
−

2 × 10
5 for a dual GPU system attached to a standard PC.
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1 INTRODUCTION

The quest to perform efficientN -body calculations has challenged
astronomers and computer scientists ever since the early 1960s. For
a long time progress was slow but so was the increase in computing
power. The first significant advance was achieved by the Ahmad–
Cohen (1973, AC) neighbour scheme which splits the total force
into a distant slowly changing part and a local contribution with
shorter time-scale, hereafter denoted as the regular and irregular
force. Considerable progress on the hardware side was made when
the GRAPE-type special-purpose computers were developed in the
early 1990s (Makino, Kokubo & Taiji 1994) and later improved to
GRAPE-4 and GRAPE-6 (Makino et al. 2003). More recently, the
general availability of Graphics Processing Units (GPUs) and the
corresponding CUDA programming language have facilitated large
gains inN -body simulations at modest cost. Early applications
based on CUDA (Nyland, Harris & Prins 2007, Belleman, Bedorf
& Portegies Zwart 2008) demonstrated significant speeding-up, ap-
proaching GRAPE-6 performance. Moreover, the introduction of
pseudo double precision for the coordinate differences without sac-
rificing much efficiency (Nitadori 2009) ensured increased confi-
dence in the results. In other problems, the employment of CUDA
has already led to Petaflop performance by combining several thou-
sand GPUs.

⋆ E-mail:keigo@css.tsukuba.ac.jp (KN); sverre@ast.cam.ac.uk (SJA)

In this paper, we are mainly concerned with small stand-alone
systems using one or two GPUs with the codeNBODY 6–GPU.
However, mention should also be made of the parallel version
NBODY 6++ which is capable of reaching somewhat larger parti-
cle numbers using several types of hardware (Spurzem 1999) and
is also intended for GPUs.

This paper is organized as follows. After reviewing some rel-
evant aspects in the standardNBODY 6 code we discuss the new
treatment of the regular and irregular force. As a result of improve-
ments in the regular force calculation, the irregular force now be-
comes relatively expensive. Although the latter may also be evalu-
ated on the GPU, the overheads are too large. Instead we perform
this calculation in parallel using SSE1 (Streaming SIMD Exten-
sions) and OpenMP in C++ with GCC built-in functions. The pres-
ence of hard binaries requires careful attention, especially because
the regularization scheme involves different precision for the cen-
tre of mass (c.m.) motion as evaluated by FORTRAN and SSE. A
later implementation with AVX accelerated the irregular force cal-
culation. The performance gain is illustrated by comparison with
the basic version at relatively small particle numbers and we esti-
mate the cost of doing large simulations for two types of hardware.
Finally, we summarize current experience with small GPU systems
and point to possible future developments.

1 For computational terms, see glossary in Appendix A.
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2 BASIC NBODY6 CODE

The codeNBODY 6 was developed during the late 1990s (Aarseth
1999). It was based on a previous codeNBODY 5 which also em-
ployed the AC neighbour scheme. Here the main improvement was
to replace the fourth-order Adams method by an equivalent Hermite
formulation (Makino 1991) for the case of two force polynomials
(Makino & Aarseth 1992). An intermediate step was made with
the Hermite individual time-step codeNBODY 4 (Aarseth 1996) de-
signed for use by several generations of GRAPE-type computers.

The combination of Hermite integration with block-steps has
proved a powerful tool inN -body simulations. At earlier times
its simple form was beneficial for using together with the special-
purpose GRAPE hardware which supplies the force and its first
derivative. This allows for the construction of an efficient and accu-
rate fourth-order integration method where the introduction of hi-
erarchical block-steps reduces the overheads of coordinate and ve-
locity predictions considerably and facilitates parallel procedures.
Experience has also shown that the Hermite AC block-step scheme
is highly cost-effective in the standardNBODY 6 code.

On conventional computers, the regular force calculation
dominates the CPU time, with only a weak dependence on the
neighbour strategy. Thus there are compensating factors when the
number of neighbours (ni) is varied. The new neighbours are cho-
sen at the time of a regular force calculation. Hence all particles in-
side the corresponding neighbour radius are selected, together with
any particles in an outer shell approaching with small impact pa-
rameter. Individual neighbour radiiRs are adjusted according to the
local density contrast, with additional modifications near the upper
and lower boundary. New values are obtained by the expression

Rnew
s = Rold

s

„

np

ni

«1/3

, (1)

wherenp is predicted from the local density contrast. Note that
the case of zero neighbour number which may occur for distant
particles is also catered for. Formally, explicit derivative corrections
to the force polynomial should be carried out for each neighbour
change. However, the same terms are added and subtracted from
the respective polynomials so that this overhead may be omitted,
provided the desired results are obtained at times commensurate
with the maximum time-step (Makino & Aarseth 1992).

The treatment of close encounters forms a large part of the
code. We distinguish between two-body and multiple encounters
which are studied by the tools of Kustaanheimo-Stiefel (1965, KS)
and chain regularization (Mikkola & Aarseth 1993). Several meth-
ods for integrating the KS equations of motion have been used over
the years. The preferred method is a high-order Hermite scheme
(Mikkola & Aarseth 1998) and an iterative solution without recal-
culating the external perturbation. This allows the physical time to
be obtained by a sixth-order Taylor series expansion of the time
transformationt′ = R. The so-called Stumpff method maintains
machine accuracy in the limit of small perturbations and only re-
quires half the number of steps per orbit compared to the KS fourth-
order polynomial method employed byNBODY 5. Even so, small
systematic errors are present over long time intervals. Hence a rec-
tification of the KS variablesu,u′ is performed to be consistent
with the integratedvalue of the binding energy (Fukushima 2005).
Further speed-up can be achieved for small perturbations by em-
ploying the slow-down concept in which the time and perturbing
force are magnified according to the principle of adiabatic invari-
ance (Mikkola & Aarseth 1996).

Given a population of hard binaries, close encounters between

binaries and field stars or other binaries are an interesting feature
particularly because collisions or violent ejections may occur. The
chain concept led to a powerful method for studying strong inter-
actions of 3–5 particles where two-body singularities are removed
(Mikkola & Aarseth 1993). Implementation of perturbed chain reg-
ularization introduces many complexities, as well as dealing with
internal tidal effects, membership changes or post-Newtonian terms
(Aarseth 2003). As far as theN -body code is concerned, the asso-
ciated c.m. is integrated like a single particle with the force and first
derivative obtained by mass-weighted summation over the compo-
nents. The internal motions are advanced by a high-order integra-
tor (Bulirsch & Stoer 1966) with energy conservation better than
10−10. Moreover, the solutions for internal KS or chain are contin-
ued until the end of the new block-step before the other particles are
treated. As for KS termination, this is implemented exactly at the
end by a simple iteration. Internal chain integration, on the other
hand, is only advanced while the new time is less than the block-
time and any coordinates required by other particles are obtained
by prediction. Consequently, chain termination is performed at an
arbitrary time and a new current commensurate time is constructed
by suitable subdivision. This in turn reduces the block-step further
but is compensated by the relatively small number of chain treat-
ments.

Finally, in this paper, we omit a discussion of synthetic stel-
lar evolution which is optional and forms a large part of the code.
Hence for the purpose of GPU developments these aspects may
be ignored for simplicity. In any case, the additional CPU time re-
quired by the host is relatively small.

3 NEW IMPLEMENTATIONS

We now turn to describing some relevant procedures associated
with the new implementations.

3.1 Software design

A subroutineINTGRT in NBODY 6 drives the numerical integra-
tion of the AC neighbour scheme. It uses two libraries during the
integration, prepared for the calculation of the regular and the ir-
regular force, namedGPUNB andGPUIRR. Although the names
of the libraries includeGPU, non-GPU implementations exist, e.g.
plain C++ versions or high performance versions with SSE/AVX
and OpenMP. The presentNBODY 6-GPU code employs a GPU
version written in CUDA (with multiple-GPU support) forGPUNB
and a CPU version with an acceleration by SSE/AVX and OpenMP
for GPUIRR. A first implementation ofGPUIRR used GPU. How-
ever, it was slower than a fine-tuned CPU code because of thefine-
grainednature of the irregular force calculation.

Fig. 1 illustrates a schematic diagram for the relation between
intgrt.f, GPUNB and GPUIRR. Here,GPUNB receives posi-
tions, velocities, masses and time-steps of the attracting particles
(so calledj-particles) and positions, velocities and neighbour radii
of the attracted (or active) particles (i-particles), and it returns regu-
lar forces, their time derivatives and neighbour lists.GPUIRR holds
the position and up to its third time derivatives, mass, the time
of last irregular integration and the current neighbour list of each
particle, and returns the irregular force and its time derivative for
active particles. After an irregular step of particlei, the variables
Ri, Ṙi,Fi, Ḟi, tI,i andmi are sent toGPUIRR and after a regular
step, the listLi is sent if there is a change.

c© 2011 RAS, MNRAS000, 1–7
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Figure 1. A schematic diagram of theNBODY 6-GPU code.

3.2 Velocity neighbour criterion

The traditional neighbour criterion that a particlej is a neighbour
of particlei is defined by

|Rij | < hi, (2)

whereRij = Rj−Ri andhi is the radius of the neighbour sphere.
In this implementation, we employ a modified criterion to include
the velocities by the condition

Rij,min
def
= min

“

|Rij |, |Rij + ∆tR,iṘij |
”

< hi, (3)

where∆tR,i is the regular time-step. Although this increases the
computational cost for each pairwise interaction evaluation in the
regular force calculation, we can take larger regular time-steps for
the same number of neighbours. This safety condition also ensures
that high-velocity particles can be added to the neighbour list before
they come too close.

3.3 Block-step procedure

Let us examine the sequential procedure for one block-step.

(i) Obtain the next time for integration,

tnext = min
16i6N

(tI,i + ∆tI,i), (4)

wheretI,i and∆tI,i are the time of the last irregular force calcula-
tion and irregular time-step of particlei.

(ii) Make the active particle list for regular and irregular force
calculation,

Lact,R = {i | tR,i + ∆tR,i = tnext} , (5)

Lact,I = {i | tI,i + ∆tI,i = tnext} , (6)

where the subscriptsR andI denote regular and irregular terms.
Here,{i | cond.} defines a set ofi such that it satisfiescond.

(iii) Predict all particles needed for force evaluation.
(iv) Calculate the irregular force and its time derivative for par-

ticle i ∈ Lact,I,

FI,i =
X

j∈Li

mj
Rij

|Rij |3
, (7)

ḞI,i =
X

j∈Li

mj

»

Ṙij

|Rij |3
− 3

(Rij · Ṙij)Rij

|Rij |5

–

. (8)

(v) Apply the corrector for the active irregular particles and de-
cide the next time-step∆tI,i.

(vi) Accumulate the regular force and its time derivative for each
active regular particlei ∈ Lact,R and construct the neighbour list,

FR,i =

N
X

j 6=i

8

<

:

mj
Rij

|Rij |3
(Rij,min > hi)

0 (otherwise)
, (9)

ḞR,i =

N
X

j 6=i

(

mj

»

Ṙij

|Rij |3
−3

(Rij ·Ṙij)Rij

|Rij |5

–

(Rij,min>hi)

0 (otherwise)
, (10)

Li = {j | j 6= i, Rij,min < hi} . (11)

(vii) Execute the regular corrector. Since the neighbour listLi

has been updated, the force polynomials should be corrected to re-
flect the difference between the old and new list.

3.4 The GPUNB library

TheGPUNB library computes regular forces and creates neighbour
lists for a given set of particles with single or multiple GPU(s).
First, the predicted position, velocity and mass ofNj particles are
sent from the host. The regular force and neighbour lists ofNi par-
ticles are then computed. Therefore,NiNj pairwise interactions
are evaluated in one call. UnlessNi is much smaller thanNj , the
cost of the prediction and data transfer is not significant.

The basic method to calculate the force on GPUs is common to
the previously existing implementations (Nitadori 2009, Gaburov,
Harfst & Portegies Zwart 2009), except for the treatment of neigh-
bours. During the accumulation of forces from allNj particles,
whenj is a neighbour,GPUNB skips the accumulation and saves
the indexj in the neighbour list. This procedure is applied for all
Ni particles in parallel, using the manythreadsof the GPU.

Now we discuss in more detail the force calculation proce-
dure ofGPUNB. Eachi-particle is assigned to each thread of GPU.
The position, velocity, neighbour radius, force, its time derivative
and neighbour count of particlei are held on the registers of each
thread. The position, velocity and mass of particlej are broadcast
from the memory to all the threads in a thread-block, and forces on
multiple i-particles are evaluated in parallel. If particlej turns out
to be a neighbour ofi, the indexj is written to the neighbour list in
the memory.

The actual behaviour of each thread is given in Listing B2 with
the CUDA C++ language. There is an ‘if statement’ for the neigh-
bour treatment, which is translated into a mask operation by the
compiler and has little impact on performance. If the branch is not
removed, it would be a serious overhead for parallel performance.

As well as thei-parallelism for multiple threads,j-parallelism

c© 2011 RAS, MNRAS000, 1–7
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for multiple thread-blocks and multiple GPUs are also exploited.
Thus, after the force computations, partial forces and partial neigh-
bour lists of certain particles are distributed for multiple thread-
blocks. To minimize the data transfer from GPU to host, we pre-
pared kernels for force reduction and list gathering, where local
indices in 16-bit integer are translated to global indices in 32-bit in-
teger. Partial forces are summed and sparsely scattered partial lists
are serialized to a linear array before they are sent back to the host
PC.

Finally, single precision arithmetic turned out to provide suf-
ficiently accurate results for practical use. This is because all the
close interactions are skipped in the regular force procedure2.

3.5 The GPUIRR library

The name of the libraryGPUIRR comes from an early effort to ac-
celerate the irregular force calculation on GPU, although the GPU
is not used in the current implementation, just because it is slower
than a well tuned CPU code. Still, the name of the library and
its API are used in the fast version on CPU with SSE/AVX and
OpenMP.

Different fromGPUNB, GPUIRR retains many internal states.
The position and up to its third derivative, mass and time of the last
integration of particlei are held to construct the predictor. These
quantities are updated after each irregular step. Additionally, the
neighbour list of particlei is saved for the computation of the irreg-
ular force. The list is copied from the host routineintgrt.f after
each regular step. When an irregular force on particlei is requested,
the library calculatesFI,i andḞI,i. Actually, it can be performed
in parallel, i.e. the library receives a list of irregular active particles
Lact,I and returns an array of the force and its time derivative.

The library is tuned for multi-core CPUs and SIMD instruc-
tions such as SSE and AVX. An OpenMP parallelization for dif-
ferenti-particles is straightforward. On the other hand, the SIMD
instructions are exploited for thej-parallelism for onei-particle,
which requires technical coding. To calculate pairwise forces on
a particle i from multiple (4-way for SSE, 8-way for AVX)j-
particles, we need to gather them from non-contiguous addresses
indicated by the neighbour list. The gathering process is relatively
expensive and the GFLOPS rating or ‘number of interactions per
second’ is decreased to about 40 percent of the case of brute force
calculations (Tanikawa et al. 2012) on the same processor with the
same AVX instruction set.

Unlike the regular force calculations, full single precision cal-
culation of the irregular force may not be accurate enough during
close encounters. Thus, we employ the so-called ‘two-float’ tech-
nique to express the coordinates of each particle (Nitadori 2009,
Gaburov et al. 2009). For the summation of force, single precision
turned out to be sufficient since we do not accumulate too many
terms (more than a few hundred) in the irregular force calculation.

Prediction of positions and velocities are performed inside the
library. WhenNact,I is small, predicting all theN particles is not
efficient. Thus, at some point (cf.NPACT in Table C1), we switch
to predict only the necessary particles in this block-step. Even if we
only predict the necessary particles, combining and sorting of the
neighbour lists or random memory access may be expensive. Thus
there is a turn-around point, and an example is shown in the lines
24-29 in Listing C1.

2 We still left options using the ‘two-float’ method for the coordinates and
the accumulator.

3.6 Binary effects

The presence of binaries poses additional complications when com-
bining results of force calculations from the host and the library for
irregular force. As can be seen above, the irregular force on a sin-
gle particle due to other single particles is of simple form and its
calculation can be speeded up in C++ with SSE/AVX and OpenMP.
This is no longer the case for regularized systems where differential
force corrections are needed on the host to compensate for the c.m.
approximation which is employed. For simplicity we assume that
only the irregular force needs to be corrected; this in turn implies
that the neighbour radius is sufficiently large. A further complica-
tion arises in the force evaluation due to perturbers. The numerical
problem can be illustrated by considering the new regular force dif-
ference during the corresponding time intervalt − tR,i,

∆FR = (Fnew
R − F

old
R ) + (Fnew

I − F
old
I ), (12)

whereF
old
R andF

new
R denote regular forces evaluated at the old

and new timestR,i and t, respectively, whileFold
I andF

new
I de-

note irregular forces both evaluated at the new timet with the old
and new neighbour lists. Hence the net change of irregular force is
contained within the second bracket. In the case of no neighbour
change, this term should be suitably small, otherwise it would tend
to reduce the regular time-step. It is therefore important to ensure
consistency between the irregular force as calculated at each time-
step and that obtained elsewhere at the end of a regular step where
both are based on the samepredictedquantities.

In the case of an active KS binary, the old and new force con-
tributions due to perturbers are acquired in double precision on
the host and similarly for the c.m. term which is subtracted. Since
the latter is evaluated in the single precisionGPUIRR library, this
means that a small discontinuity is introduced. However, the old
and new irregular force are still numerically identical in the ab-
sence of neighbour change and hence the same neighbours do not
affect the regular force difference. A similar differential force pro-
cedure is carried out for single particles having perturbed binaries
as neighbours. Note that the sequential ordering of neighbour lists
facilitates the identification of KS binaries for various purposes.
Finally, force corrections involving a chain c.m. particle are per-
formed analogously, where the internal contributions toF and Ḟ

are obtained by summation over the members.

The strategy for controlling the number of neighbours also
changes when using the GPU. Unless present initially, binaries
eventually become an important feature ofN -body simulations. It
is therefore desirable to strike a balance between the maximum size
of regularized binaries and the neighbour radius. This can read-
ily be done for long-lived binaries, subject to the maximum mem-
bership denoted by the parameterNBMAX. The average neighbour
number can also be controlled to a certain extent. This is achieved
by an optional adjustment of a density contrast parameterα used in
the predicted neighbour numbernp of equation (1). Fortunately the
ratioRs/a becomes more favourable for largeN because the semi-
major axis of hard binaries is∝ 1/N while the neighbour radius
reduces more slowly. Hence a safe strategy for small and interme-
diate simulations is to employ a relatively large value ofNBMAX
together with fine-tuning ofα. Also note that the possible problem
of too small neighbour radii is mostly relevant for the central cluster
region becauseRs tends to be larger at lower density.

c© 2011 RAS, MNRAS000, 1–7
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Table 1. Hardware and software configurations.

System A System B
CPU Core i7–920 Core i7–2600K
(spec) 4 cores, 2.66 GHz 4 cores, 3.40 GHz
(SIMD) SSE4.2 (4-float) AVX (8-float)

GPU 2×GeForce GTX 470 2×GeForce GTX 560 Ti
Motherboard MSI X58 MSI P67
Memory 6 GB, DDR3–1333 8 GB, DDR3–1600
OS CentOS 5.5 x8664 CentOS 6.0 x8664
Compilers GCC 4.1.2, CUDA 3.0 GCC 4.6.1, CUDA 4.0

Table 2. Performance summary for System B. We show total wall-clock
time and partial time for regular and irregular force. The number of regu-
lar and irregular individual steps is also given, together with the time-step
weighted average neighbour numbers.

N 32k 64k 128k 256k
Twall/sec 18 59 209 802
Treg /sec 5.3 19 84 338
Tirr /sec 4.7 13 47 230
Nreg/106 2.8 6.1 13 28
Nirr/106 33 85 220 550
Nirr/Nreg 11.8 13.9 16.9 19.6
〈Nnb〉 46 55 64 83

4 PERFORMANCE

The acid test of any code is measured by its performance. This
is especially the case forN -body simulations where an important
challenge is to describe the dynamics of globular clusters. Here we
report on some performance tests to illustrate the calculation cost
for a wide range of particle numbers. It should be emphasized that
timings based on idealized systems do not demonstrate the capa-
bility of dealing with more advanced stages which are character-
ized by large density contrasts and the presence of hard binaries.
Additional examinations of more realistic conditions are therefore
highly desirable, as commented on below.

For the basic performance tests we study isolated Plummer
models in virial equilibrium with equal-mass particles in the range
N = 8–256 k. We use standardN -body units with total energy
E = −0.25 and total mass1. The benchmarks use two hard-
ware systems, A and B, where the specifications are summarized
in Table 1. Timing tests were first made for the older System A.

In order to have a more balanced dynamical state, the com-
puting times are measured fromt = 2 to t = 4. The wall-clock
time (in sec) as a function ofN is shown in Fig. 2 for both systems.
Also shown separately are the times for the regular and irregular
force calculation. As can be seen, these timings are quite similar
for System A, especially in the large-N limit. The minimum cost is
achieved for particular choices of the upper limit of the neighbour
number,NBMAX, which are close to values used in long-term sim-
ulations. As for the remaining time expended by the FORTRAN
part, it forms a diminishing fraction of the total effort, with about
40 percent forN = 32 k and 20 percent forN = 256 k.

Timing comparisons for the standardNBODY 6 code have also
been carried out. Thus at the upper limit ofN = 24 000, the wall-
clock time is 56 times the corresponding time for System A, with an
asymptotic dependenceTcomp ∝ N1.8 in both cases. Excluding the
time consumption of the other parts, the performance of the regular
force calculation with System A exceeds 1 TFLOPS. As shown in
Fig. 2, the CPU times for the irregular force with System B are
almost a factor of 2 faster than for System A when the slightly
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faster clock is included. This improvement is mainly due to the use
of AVX instructions which became available very recently. More
precise timings for System B are presented in Table 2, as well as
time-step counts and average neighbour numbers for differentN .
In comparison, the actual timings forN = 256 k and System A
were 911, 366 and 354 sec, respectively3. We also note that the
average neighbour number scales approximately asN1/3.

The difference between using one and two GPUs is of inter-
est. In Fig. 3, we show timings on System A using one and two
GPUs, as well as a fully tuned CPU version with SSE and OpenMP
(NBODY 6–SSE). The wall-clock times are plotted in filled sym-
bols with solid lines, and times for the regular force in open sym-
bols with dotted lines. The performance gain in computing regular
forces from the SSE version to one GPU is about a factor of 10,
and this is doubled when going from one GPU to two GPUs. How-
ever, the linear speed-up of the regular force calculations does not
always correspond to a good scalability of the total simulation time
because of the time consumed by the other parts. For example with
N = 64 k, the regular force time is reduced from 45 to 23 sec by
using two GPUs, although this becomes 99 and 77 sec for the total
time. Hence two separate simulations may be made simultaneously
on a dual GPU machine to keep the computing units busy, provided
N is not too large.

The question of reproducibility in the multi-thread environ-
ment is a difficult one, particularly in view of the chaotic nature ex-
hibited by theN -body problem. On the other hand, the calculations
are speeded up significantly by using parallel OpenMP procedures.
At present, two important parallel treatments (lines 46–50 and 104–
115 of Listing C1) are not thread-safe while some other FORTRAN
parts are well behaved. Consequently, strict reproducibility can be
enforced by omitting these procedures at some loss of efficiency.
However, the timing tests were carried out with full optimization
since the early stage is essentially reproducible in any case.

The performance tests employed standard time-step param-
eters (η = 0.02) for the irregular and regular force polynomi-
als. Typical relative energy errors for the time interval quoted are
∆E/E ≃ 1.5× 10−7 (N = 128 and 256 k; alsoN = 16 k). This
compares favourably with values4 × 10−7 for the original code
(N = 8 and 16 k). It should be noted that the intrinsic relative error
in potential energy evaluated on the GPU for efficiency is1×10−8

and hence on the safe side.
Most N -body simulations, whether they be core collapse or

substantial evaporation, are concerned with long time-scales. It is
therefore desirable to assess the code behaviour for more advanced
stages of evolution with high core density which inevitably leads
to binary formation and strong interactions in compact subsystems.
At this stage the special treatments of close encounters in the form
of KS and chain regularization begin to play an important role. The
ejection of high-velocity members is a hallmark of an evolved dy-
namical state. In general, the main energy errors are due to strong
interactions, especially in connection with switching to or from
regularization procedures. Even so, a study of core collapse for
an equal-mass system withN = 32 k showed that the accumu-
lated changes in total energy are surprisingly small, amounting to
P

∆Ej = −1×10−4 at minimum core radius. A comparable drift
in total energy was also seen in a test calculation well beyond core
collapse forN = 16 k. Hence the Hermite integration scheme has
proved to possess excellent long-term stability.

3 Because of cache miss, there is a degradation aboveN = 64 k for the
irregular force calculation with AVX.

5 CONCLUSIONS

We have presented new implementations for efficient integration
of the N -body problem with GPUs. In the standardNBODY 6

code, the regular force calculation dominates the CPU time. Con-
sequently, the emphasis here has been on procedures for speeding
up the force calculation. First the regular force evaluation was im-
plemented on the GPU using the libraryGPUNB which also forms
the neighbour list. This procedure is ideally suited to massively par-
allel force calculations on GPUs and resulted in significant gains.
However, a subsequent attempt to employ the GPU for the irreg-
ular force showed that the overheads are too large. It turned out
that different strategies are needed for dealing with the regular and
irregular force components and this eventually led to the develop-
ment of the special libraryGPUIRR. The use of SSE and OpenMP
speeded up this part such that the respective wall-clock times are
comparable for a range of particle numbers.

After the recent hardware with AVX support became avail-
able, the library was updated. This led to additional speed-up of
the irregular force calculation. It is also essential that the regular
force part scales well on multiple GPUs. Thus in the future, fur-
ther speed-up may be achieved by using four GPUs and an octo-
core CPU. It should be noted that in the present scheme, the use
of multiple GPUs only benefits the regular force calculation which
therefore scales well. Although largeN -body simulations are still
quite expensive, we have demonstrated that the regular part of the
Ahmad–Cohen neighbour scheme is well suited for use with GPU
hardware. Moreover, the current formulation of theNBODY 6–GPU

code performs well for a variety of difficult conditions.
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APPENDIX A: GLOSSARY

GCC GNU Compiler Collection, including gcc, g++,
gfortran and other languages.
API Application Programing Interface. This provides definitions

or prototypes of FORTRAN subroutines or C functions.
SIMD Single Instruction Multiple Data. A model of parallel

computer where an operation such as addition and multiplication
is performed for multiple data.
SSE Streaming SIMD Extensions. Additional instruction set for

x86. Four words single precision floating point operations on 128-
bit registers are supported.
AVX Advanced Vector eXtensions. Further enlargement of SSE.

Eight words single precision or four words double precision float-
ing point operations on 256-bit registers.
CUDA Compute Unified Device Architecture. A frame-work for

general purpose computing on NVIDA GPUs, including language,
compiler, run-time library and device driver.
OpenMP A standard to utilize multiple processors on shared

memory from high-level languages, provided as directives of the
language.
Thread A unit of parallel execution. Threads of CPU execute dif-

ferent contexts, while a cluster of threads of GPU executes the same
context for different data.
Thread-Block A number of GPU threads which share the same

context.
Kernel A short program submitted and executed on GPU.
i-particle A particle which feels the gravitational force, named

from the outer loop index.
j-particle A particle which is a source of the gravitational force,

named from the inner loop index.
i-parallelism Parallelism for the outer loop. Forces on different

particles are calculated in parallel.
j-parallelism Parallelism for the inner loop. Forces from differ-

ent particles are calculated in parallel, and summed later.

APPENDIX B: CUDA CODES

In Listing B1 and B2, we show the innermost regular force kernel
written in CUDA C++ as well as some definitions of data struc-
tures. Each CUDA thread holds onei-particle in its registers, and
evaluates a force from particlej and accumulates it. The functions
qualified with device are forced to be in-line. The argument
nblist is a pointer to the device memory.

Listing B1: Definitions of structures.

1 struct Jparticle{

2 float3 pos;

3 float mass;

4 float3 vel;

5 float pad; / / 64−b y t e

6 };

7 struct Iparticle{

8 float3 pos;

9 float h2;

10 float3 vel;

11 float dtr; / / 64−b y t e

12 };

13 struct Force{

14 float3 acc;

15 float pot;

16 float3 jrk;

17 int nnb; / / 64−b y t e

18 };

Listing B2: The innermost gravity calulation.

1 / / num o f n e i b p e r b l ock , mus t be power o f 2

2 #define NNB_PER_BLOCK 256

3

4 __device__ void dev_gravity(

5 const int jidx,

6 const Iparticle &ip,

7 const Jparticle &jp,

8 Force &fo,

9 uint16 nblist[])

10 {

11 float dx = jp.pos.x - ip.pos.x;

12 float dy = jp.pos.y - ip.pos.y;

13 float dz = jp.pos.z - ip.pos.z;

14 float dvx = jp.vel.x - ip.vel.x;

15 float dvy = jp.vel.y - ip.vel.y;

16 float dvz = jp.vel.z - ip.vel.z;

17 float dxp = dx + ip.dtr * dvx;

18 float dyp = dy + ip.dtr * dvy;

19 float dzp = dz + ip.dtr * dvz;

20

21 float r2 = dx *dx + dy *dy + dz *dz;

22 float r2p = dxp*dxp + dyp*dyp + dzp*dzp;

23 float rv = dx *dvx + dy *dvy + dz *dvz;

24

25 float rinv1 = rsqrtf(r2);

26 if(fminf(r2, r2p) < ip.h2){

27 / / a d d r e s s t o a v o i d b u f f e r o v e r f l o w

28 int addr = fo.nnb & (NNB_PER_BLOCK -1);

29 nblist[addr] = (uint16)jidx;

30 fo.nnb++;

31 rinv1 = 0.f;

32 }

33 float rinv2 = rinv1 * rinv1;

34 float mrinv1 = jp.mass * rinv1;

35 float mrinv3 = mrinv1 * rinv2;

36 float alpha = -3.f * rv * rinv2;

37

38 #ifdef POTENTIAL

39 fo.pot += mrinv1;

40 #endif

41 fo.acc.x += mrinv3 * dx;

42 fo.acc.y += mrinv3 * dy;

43 fo.acc.z += mrinv3 * dz;

44 fo.jrk.x += mrinv3 * (dvx + alpha * dx);

45 fo.jrk.y += mrinv3 * (dvy + alpha * dy);

46 fo.jrk.z += mrinv3 * (dvz + alpha * dz);

47 }

In lines 17–19, 22 and 26, we can see the additional operations for
the velocity criterion (5 mul, 6 add, 1 min) discussed in Section 3.2.

APPENDIX C: FORTRAN CODES

It is instructive to examine the program flow for the treatment of the
regular and irregular force during one block-step. We have copied
the relevant FORTRAN parts, omitting some extra features, and
display a complete cycle in the general case. Consider the situa-
tion when the next block-step time, denoted byTMIN, has been

c© 2011 RAS, MNRAS000, 1–7
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Table C1. List of symbols.

Symbol Data type Definition
LMAX PARAMETER Size of compiled neighbour arrays
NBMAX PARAMETER Maximum neighbour number
NIMAX PARAMETER Block-size of regular force loop
NMAX PARAMETER Maximum particle number
NPACT PARAMETER Limit for active particle prediction
NPMAX PARAMETER Parallel irregular integration
IFIRST INTEGER Array index of first single particle
NFR INTEGER Number of regular force calculations
NQ INTEGER Membership ofLISTQ
NTOT INTEGER Number of single particles and KS pairs
LISTQ INT (NMAX) List of particles due before a given time
NXTLEN INT (NMAX) Length of current block-step list
NXTLST INT (NMAX) List of block-step members
RS REAL(NMAX) Radius of individual neighbour sphere
STEPR REAL(NMAX) Regular time-step
T0 REAL(NMAX) Time of last irregular force calculation
TMIN REAL(NMAX) New block-time
TNEW REAL(NMAX) Next irregular force time
X REAL(3,NMAX) Predicted coordinates
X0 REAL(3,NMAX) Corrected coordinates
XDOT REAL(3,NMAX) Predicted velocities
X0DOT REAL(3,NMAX) Corrected velocities

determined at the end of the previous step (as shown below). All
particles due for consideration up to a certain time are contained in
LISTQ, and the new block-step membersNXTLEN which satisfy
equation (6) are saved in the list arrayNXTLST after the first call
toINEXT. Procedures for advancing KS and chain solutions which
usually follow here are omitted for simplicity. The essential sym-
bols are defined in Table C1, where some are fixed parameters. For
completeness, we also include theOPEN andCLOSE statements,
normally only used at the start and end. With this preamble and the
definitions of Table C1 the code section can now be inspected with
assistance from the explanatory comments. The purpose of most
special procedures have already been discussed in the text and the
naming is intended to be descriptive.

Listing C1: extract ofintgrt.omp.f.

1 ∗ D e c l a re t y p i c a l p a r a m e t e r s f o r N=64k .
2 PARAMETER(NPACT=150, NPMAX=16, NIMAX=1024)
3 ∗ Open t h e r e g u l a r and i r r e g u l a r l i b r a r i e s .
4 CALL GPUNB_OPEN(NTOT)
5 CALL GPUIRR_OPEN(NTOT,LMAX)
6 ∗

7 ∗ F ind a l l p a r t i c l e s i n n e x t b l o c k ( TNEW = TMIN) and s e t TIME.
8 CALL INEXT(NQ,LISTQ,TMIN,NXTLEN,NXTLST)
9 TIME = TMIN

10 ∗

11 ∗ Form l i s t s o f c a n d i d a t e s f o r new i r r e g u l a r and r e g u l a r f o r c e.
12 NFR = 0
13 DO 28 L = 1,NXTLEN
14 J = NXTLST(L)
15 IF (TNEW(J).GE.T0R(J) + STEPR(J)) THEN
16 NFR = NFR + 1
17 IREG(NFR) = J
18 IRR(L) = J
19 ELSE
20 IRR(L) = 0
21 END IF
22 28 CONTINUE
23 ∗

24 ∗ Dec ide be tween p r e d i c t i n g<= NPACT a c t i v e ( NFR=0) o r a l l p a r t i c l e s .
25 IF (NXTLEN.LE.NPACT.AND.NFR.EQ.0) THEN
26 CALL GPUIRR_PRED_ACT(NXTLEN,NXTLST,TIME)
27 ELSE
28 CALL GPUIRR_PRED_ALL(IFIRST,NTOT,TIME)
29 END IF
30 ∗

31 ∗ E v a l u a t e new i r r e g u l a r f o r c e s & d e r i v a t i v e s i n t h e GPUIRR l ib r a r y .
32 CALL GPUIRR_FIRR_VEC(NXTLEN,NXTLST,GF,GFD)
33 ∗

34 ∗ Choose be tween s t a n d a r d and p a r a l l e l i r r e g u l a r i n t e g r a t i on .
35 IF (NXTLEN.LE.NPMAX) THEN
36 ∗

37 ∗ C o r r e c t t h e i r r e g u l a r s t e p s s e q u e n t i a l l y .
38 DO 48 II = 1,NXTLEN

39 I = NXTLST(II)
40 CALL NBINT(I,IRR(II),GF(1,II),GFD(1,II))
41 48 CONTINUE
42 ∗

43 ELSE
44 ∗

45 ∗ Per fo rm i r r e g u l a r c o r r e c t i o n i n p a r a l l e l .
46 ! $omp p a r a l l e l do p r i v a t e ( I I , I )
47 DO 50 II = 1,NXTLEN
48 I = NXTLST(II)
49 CALL NBINTP(I,IRR(II),GF(1,II),GFD(1,II))
50 50 CONTINUE
51 ! $omp end p a r a l l e l do
52 END IF
53 ∗

54 ∗ Check r e g u l a r f o r c e u p d a t e s ( NFR members on b l o c k−s t e p ) .
55 IF (NFR.GT.0) THEN
56 ∗

57 ∗ P r e d i c t a l l p a r t i c l e s ( e x c e p t TPRED=TIME) i n C++ on h o s t .
58 CALL CXVPRED(IFIRST,NTOT,TIME,T0,X0,X0DOT,F,FDOT,X,XDOT,TPRED)
59 ∗ Send a l l s i n g l e p a r t i c l e s and c . m. b o d i e s t o t h e GPU.
60 NN = NTOT - IFIRST + 1
61 CALL GPUNB_SEND(NN,BODY(IFIRST),X(1,IFIRST),XDOT(1,IFIRST))
62 ∗

63 ∗ Per fo rm r e g u l a r f o r c e l o o p ( b l o c k s o f NIMAX=1024 ) .
64 JNEXT = 0
65 DO 55 II = 1,NFR,NIMAX
66 NI = MIN(NFR-JNEXT,NIMAX)
67 ∗ Copy n e i g h b o u r r a d i u s , STEPR and s t a t e v e c t o r f o r each b l o c k.
68 ! $omp p a r a l l e l do p r i v a t e ( LL, I , K)
69 DO 52 LL = 1,NI
70 I = IREG(JNEXT+LL)
71 H2I(LL) = RS(I)**2
72 DTR(LL) = STEPR(I)
73 DO 51 K = 1,3
74 XI(K,LL) = X(K,I)
75 VI(K,LL) = XDOT(K,I)
76 51 CONTINUE
77 52 CONTINUE
78 ! $omp end p a r a l l e l do
79 ∗

80 ∗ E v a l u a t e f o r c e s , d e r i v a t i v e s and n e i g h b o u r l i s t s f o r new b lo c k .
81 CALL GPUNB_REGF(NI,H2I,DTR,XI,VI,GPUACC,GPUJRK,GPUPHI,LMAX,
82 & NBMAX,LISTGP)
83 ∗ Copy n e i g h b o u r l i s t s f rom t h e GPU.
84 ! $omp p a r a l l e l do p r i v a t e ( LL, I , ITEMP, NNB, L1, L)
85 DO 56 LL = 1,NI
86 I = IREG(JNEXT + LL)
87 NNB = LISTGP(1,LL)
88 L1 = 1
89 DO 53 L = 2,NNB+1
90 ∗ Note GPU a d d r e s s s t a r t s f rom 0 ( hence add IFIRST t o n e i g h b o u rl i s t ) .
91 ITEMP = LISTGP(L,LL) + IFIRST
92 IF (ITEMP.NE.I) THEN
93 L1 = L1 + 1
94 LISTGP(L1,LL) = ITEMP
95 END IF
96 53 CONTINUE
97 LISTGP(1,LL) = L1 - 1
98 CALL GPUIRR_SET_LIST(I,LISTGP(1,LL))
99 56 CONTINUE

100 ! $omp end p a r a l l e l do
101 ∗

102 ∗ E v a l u a t e c u r r e n t i r r e g u l a r f o r c e s by v e c t o r p r o c e d u r e .
103 CALL GPUIRR_FIRR_VEC(NI,IREG(II),GF(1,1),GFD(1,1))
104 ! $omp p a r a l l e l do p r i v a t e ( LL, I , LX)
105 DO 57 LL = 1,NI
106 I = IREG(JNEXT+LL)
107 ∗ Send new i r r e g u l a r f o r c e and p e r f o rm Herm i te c o r r e c t o r .
108 CALL GPUCOR(I,XI(1,LL),VI(1,LL),GPUACC(1,LL),GPUJRK(1,LL),
109 & GF(1,LL),GFD(1,LL),LISTGP(1,LL),LX)
110 ∗ Update n e i g h b o u r l i s t s i n GPUIRR l i b r a r y ( o n l y i f changed: LX > 0 ) .
111 IF (LX.GT.0) THEN
112 CALL GPUIRR_SET_LIST(I,LIST(1,I))
113 END IF
114 57 CONTINUE
115 ! $omp end p a r a l l e l do
116 JNEXT = JNEXT + NI
117 55 CONTINUE
118 END IF
119 ∗

120 ∗ Dete rm ine n e x t b l o c k t i m e ( n o t e STEP may s h r i n k i n GPUCOR) .
121 TMIN = 1.0D+10
122 DO 60 L = 1,NXTLEN
123 I = NXTLST(L)
124 IF (TNEW(I).LT.TMIN) THEN
125 TMIN = TNEW(I)
126 END IF
127 60 CONTINUE
128 ∗

129 ∗ Copy c u r r e n t c o o r d i n a t e s & v e l o c i t i e s f rom c o r r e c t e d v a l u es .
130 ! $omp p a r a l l e l do p r i v a t e ( I , L, K)
131 DO 70 L = 1,NXTLEN
132 I = NXTLST(L)
133 DO 65 K = 1,3
134 X(K,I) = X0(K,I)
135 XDOT(K,I) = X0DOT(K,I)
136 65 CONTINUE
137 ∗ Send c o r r e c t e d a c t i v e p a r t i c l e s t o GPUIRR l i b r a r y .
138 CALL GPUIRR_SET_JP(I,X0(1,I),X0DOT(1,I),F(1,I),FDOT(1,I),
139 & BODY(I),T0(I))
140 70 CONTINUE
141 ! $omp end p a r a l l e l do
142 CALL GPUNB_CLOSE
143 CALL GPUIRR_CLOSE
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